Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Image denoising for real-time MRI.

MPG-Autoren
/persons/resource/persons199382

Klosowski,  J.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2351068_Suppl.docx
(Ergänzendes Material), 2MB

Zitation

Klosowski, J., & Frahm, J. (2017). Image denoising for real-time MRI. Magnetic Resonance in Medicine, 77(3), 1340-1352. doi:10.1002/mrm.26205.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-8421-B
Zusammenfassung
Purpose To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. Theory and Methods The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. Results The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. Conclusion The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts.