
Near-Optimal Approximate Shortest Paths and Transshipment
in Distributed and Streaming Models

Ruben Becker Andreas Karrenbauer Sebastian Krinninger
Christoph Lenzen

Max Planck Institute for Informatics
Saarland Informatics Campus

Saarbrücken, Germany

Abstract

We present a method for solving the shortest transshipment problem—also known as
uncapacitated minimum cost flow—up to a multiplicative error of 1+ε in undirected graphs
with polynomially bounded integer edge weights using a tailored gradient descent algorithm.
An important special case of the transshipment problem is the single-source shortest paths
(SSSP) problem. Our gradient descent algorithm takes ε−3 polylogn iterations, and in
each iteration it needs to solve the transshipment problem up to a multiplicative error
of polylogn, where n is the number of nodes. In particular, this allows us to perform a
single iteration by computing a solution on a sparse spanner of logarithmic stretch. As a
consequence, we improve prior work by obtaining the following results:

1. Broadcast congest model: (1+ε)-approximate SSSP using Õ(ε−O(1)(
√
n+D)) rounds,1

where D is the (hop) diameter of the network.
2. Broadcast congested clique model: (1 + ε)-approximate transshipment and SSSP using

Õ(ε−O(1)) rounds.
3. Multipass streaming model: (1 + ε)-approximate transshipment and SSSP using Õ(n)

space and Õ(ε−O(1)) passes.
The previously fastest algorithms for these models leverage sparse hop sets. We bypass
the hop set construction; computing a spanner is sufficient with our method. The above
bounds assume non-negative integer edge weights that are polynomially bounded in n;
for general non-negative weights, running times scale with the logarithm of the maximum
ratio between non-zero weights. In case of asymmetric costs, running times scale with the
maximum ratio between the costs of both directions over all edges.

1We use Õ(·) to hide polylogarithmic factors in n.

1

ar
X

iv
:1

60
7.

05
12

7v
2

 [
cs

.D
S]

 6
 N

ov
 2

01
6

Contents
1 Introduction 3

2 High-level Description of Underlying Ideas 6
2.1 Gradient Descent for Asymmetric Transshipment 6
2.2 Implementation in Various Models of Computation 10

3 Solving the Asymmetric Transshipment Problem 12
3.1 Single-Source Shortest Paths . 17
3.2 Finding a Tree Solution . 19

4 Applications 20
4.1 Broadcast Congested Clique . 20
4.2 Broadcast Congest Model . 24
4.3 Multipass Streaming . 25

5 Further Related Work 28

References 30

A Deterministic Spanner Computation in Congested Clique and Multipass
Streaming Model 34

B Primal-Dual Pair 36

C Inequality (11) 36

2

1 Introduction
Single-source shortest paths (SSSP) is a fundamental and well-studied problem in computer
science. Thanks to sophisticated algorithms and data structures [FT87, Tho99, HKT+15], it has
been known for a long time how to obtain (near-)optimal running time in the RAM model. This
is not the case in non-centralized models of computation, which become more and more relevant
in a big-data world. In fact, inherent bottlenecks [KR90] seem to block progress for exact
SSSP algorithms in these models. Thus, the focus has shifted towards efficient approximation
schemes. For instance, in the Congest model of distributed computing, the state of the art is
an algorithm that computes (1 + ε)-approximate SSSP in (

√
n+D) · 2O(

√
logn/ log (ε−1√logn))

rounds [HKN16]. Even for constant ε, this exceeds a known lower bound of Ω(
√
n/ logn+D)

rounds [DHK+12] by a super-polylogarithmic factor. As a consequence of the techniques
developed in this paper, we make a qualitative algorithmic improvement in this model: we
solve the problem in (

√
n+D)ε−O(1) polylogn rounds. We thus narrow the gap between upper

and lower bound significantly and additionally improve the dependence on ε.
The algorithm of [HKN16] follows the framework developed in [Nan14]: First, it reduces

the problem to computing SSSP on an overlay network in which communication is carried out
by broadcasting via a global BFS tree. Second, it adds a sparse hop set to the overlay network
to speed up an algorithm similar to Bellman-Ford on the overlay network. An (h, ε)-hop set is
a set of weighted edges that, when added to the original graph, provides sufficient shortcuts to
approximate all pairwise distances using paths with only h edges (“hops”). The running time
of [HKN16] mentioned above is achieved by constructing an (h, ε)-hop set of size nρ where
h ≤ 2O(

√
logn/ log (ε−1√logn)) and ρ ≤ 2O(

√
logn/ log (ε−1√logn)). Roughly speaking, both h and ρ

enter the running time of the corresponding SSSP algorithm. Motivated by this application,
it is therefore an interesting open problem to find better hop sets where both h and ρ are
bounded by ε−O(1) polylogn. Although the concept of hop sets has been known for over 20
years now, and despite considerable efforts [Coh00, Ber09, HKN14, MPV+15, HKN16, EN16],
to date no construction is known that is polylogarithmic in both h and ρ. In contrast to these
efforts for designing faster approximate SSSP algorithms, our new approach avoids the use of
hop sets completely. Instead, it achieves its superior running time by leveraging techniques
from continuous optimization.

To this end, in fact we solve a more general problem than SSSP. In the shortest transshipment
problem, we seek to find a cheapest routing for sending units of a single good from sources to
sinks along the edges of a graph meeting the nodes’ demands. Equivalently, we want to find
the minimum-cost flow in a graph where edges have unlimited capacity. The special case of
SSSP can be modeled as a shortest transshipment problem by setting the demand of the source
to −n+ 1 and the demand of every other node to 1.

Techniques from continuous optimization have been key to recent breakthroughs in the
combinatorial realm of graph algorithms [DS08, CKM+11, She13, KLO+14, Mąd13, LS14,
CMS+17]. In this paper, we apply this paradigm to computing primal and dual (1 + ε)-
approximate solutions of the shortest transshipment in undirected graphs with non-negative
edge weights. We make use of the available pool of techniques, but need to add significant

3

problem-specific tweaks. Concretely, our chief approach is to perform projected gradient
descent for a suitable norm-minimization formulation of the problem, where we approximate
the infinity norm by a differentiable soft-max function. This method reduces the problem
of computing a (1 + ε)-approximation to the more relaxed problem of computing, e.g., an
O(logn)-approximation. We then exploit that an O(logn)-approximation can be computed
very efficiently by solving a variant of the problem on a sparse spanner, and that it is well-known
how to compute sparse spanners efficiently.

Our method is widely applicable among a plurality of non-centralized models of computation
and we obtain the first non-trivial algorithms for approximate undirected shortest transshipment
in the broadcast congest,2 broadcast congested clique, and multipass streaming models. As a
further, arguably more important, consequence, we improve upon prior results for computing
approximate SSSP in these models. Our approximate SSSP algorithms are the first to be
provably optimal up to polylogarithmic factors.

We note that an approximate (dual) solution to the transshipment problem merely yields
distances to the source that are a (1 + ε)-approximation on average. In the special case of
SSSP, one typically is interested in obtaining a (1 + ε)-approximate distance to the source for
each node. We provide an extension of our algorithm that achieves this per-node guarantee.
Interestingly, the generalization to the shortest transshipment problem seems conceptually
necessary for our method to be applicable, even if we are only interested in solving the special
case of SSSP.

Our Results. By implementing our method in specific models of computation, we obtain the
following approximation schemes in graphs with non-negative polynomially bounded3 integer
edge weights:

1. Broadcast congest model: We obtain a deterministic algorithm that computes a (1 + ε)-
approximate shortest transshipment using Õ(ε−3n) rounds. No non-trivial upper bound
was known before in this model. We also obtain a deterministic algorithm for computing
(1 + ε)-approximate SSSP using Õ(ε−O(1)(

√
n + D)) rounds. This improves upon the

previous best upper bound of (
√
n+D) · 2O(

√
logn/ log (ε−1√logn)) rounds [HKN16]. For

ε−1 ∈ O(polylogn), we match the lower bound of Ω(
√
n/ logn+D) [DHK+12] (for any

(polyn)-approximation of the distance between two fixed nodes in a weighted undirected
graph) up to polylogarithmic factors in n.

2. Broadcast congested clique model: We obtain a deterministic algorithm computing a
(1 + ε)-approximate shortest transshipment using Õ(ε−3) rounds. No non-trivial upper
bound was known before in this model. We also obtain a deterministic algorithm for
computing (1 + ε)-approximate SSSP using Õ(ε−O(1)) rounds. This improves upon the
previous best upper bound of 2O(

√
logn/ log (ε−1√logn)) rounds [HKN16].

2Also known as the node-congest model.
3For general non-negative weights, running times scale by a multiplicative factor of log R, where R is the

maximum ratio between non-zero edge weights.

4

3. Multipass streaming model: We obtain a deterministic algorithm for computing a (1 + ε)-
approximate shortest transshipment using Õ(ε−3) passes and O(n logn) space. No
non-trivial upper bound was known before in this model. We also obtain a deterministic
algorithm for computing (1 + ε)-approximate SSSP using O(ε−O(1)) passes and O(n logn)
space. This improves upon the previous best upper bound of (2 + 1/ε)O(

√
logn log logn)

passes and O(n log2 n) space [EN16]. By setting ε small enough we can compute distances
up to the value logn exactly in integer-weighted graphs using polylogn passes and
O(n logn) space. Thus, up to polylogarithmic factors in n, our result matches a lower
bound of n1+Ω(1/p)/ poly p space for all algorithms that decide in p passes if the distance
between two fixed nodes in an unweighted undirected graph is at most 2(p+ 1) for any
p = O(logn/ log logn) [GO13].

In the case of shortest transshipment, we can (deterministically) return (1 + ε)-approximate
primal and dual solutions. We can further extend the results to asymmetric weights on
undirected edges, where each edge can be used in either direction at potentially different costs.
Denoting by λ ≥ 1 the maximum over all edges of the cost ratio between traversing the edge in
different directions, our algorithms give the same guarantees if the number of rounds or passes,
respectively, is increased by a factor of λ4 log λ.

In the case of SSSP, we can deterministically compute a (1 + ε)-approximation of the
distance to the source for every node. Using a randomized procedure, we can additionally
compute (with high probability within the same asymptotic running times) a tree on which
every node has a path to the source that is within a factor of (1 + ε) of its true distance.

Generally speaking, the meta-theorem behind our results is the following: Whenever we
have an algorithm for computing an α-approximate shortest transshipment on an undirected
graph, we can extend it to an algorithm for computing a (1 + ε)-approximation at the cost of
an overhead of Õ(ε−3α2).4 We can also apply this scheme to the RAM model, for example.
As one can simply compute an O(logn)-approximate shortest transshipment on a near-linear
size spanner of stretch O(logn), and the spanner can in turn be computed in nearly-linear
time [RTZ05], we obtain a deterministic (1 + ε)-approximate shortest transshipment algorithm
spending Õ(ε−3n2) time. For dense graphs and a wide range of ε, this is faster than the recent
(1 + ε)-approximate shortest transshipment algorithm of Sherman [She17] with running time
O(ε−2m1+o(1)). Furthermore, if Sherman’s algorithm can be adapted to return a dual solution,
using it to solve the problem on the spanner would yield a running time of Õ(ε−3(m+n1+o(1))),
which is faster in any graph that is not very sparse. We do not get any explicit results in the
PRAM model, but the task of qualitatively improving Cohen’s long-standing upper bound
of m1+o(1) work and polylogn depth for (1 + ε)-approximate SSSP [Coh00] now reduces to
finding a (polylogn)-approximate transshipment using Õ(m) work and polylogn depth.

Related Work on Shortest Transshipment. Shortest transshipment is a classic problem
in combinatorial optimization [KV00, Sch03]. The classic algorithms for directed graphs with

4The ‘overhead’ we mean here is model-specific: number of rounds in the Congest model and congested
clique, respectively, number of passes in the multipass streaming model, and work and depth, respectively, in
the PRAM model.

5

non-negative edge weights in the RAM model run in time O(n(m+ n logn) logn) [Orl93] and
O((m + n logn)B) [EK72], respectively, where B is the sum of the nodes’ demands (when
they are given as integers) and the term m+ n logn comes from SSSP computations. If the
graph contains negative edge weights, then these algorithms require an additional preprocessing
step to compute SSSP in presence of negative edge weights, for example in time O(mn)
using the Bellman-Ford algorithm [Bel58, For56] or in time O(m

√
n logN) using Goldberg’s

algorithm [Gol95].5 The weakly polynomial running time was improved to Õ(m
√
n polylogR)

in a recent breakthrough for minimum-cost flow [LS14], where R is the ratio between the largest
and the smallest edge weight. Independent of our research, very recently Sherman [She17]
obtained a randomized algorithm for computing a (1 + ε)-approximate shortest transshipment
in undirected graphs with non-negative edge weights in time O(ε−2m1+o(1)) in the RAM model.
This algorithm is based on a preconditioning approach for speeding up gradient descent. We are
not aware of any non-trivial algorithms for computing (approximate) shortest transshipment
in non-centralized models of computation, such as distributed and streaming models. It is
unclear whether Sherman’s approximation algorithm [She17] can be implemented efficiently in
these models. In any event, the ε−2no(1) bound on the number of iterations seems inherent in
Sherman’s approach, whereas our method brings this number down to ε−3 polylogn.

We review further related work on (approximate) SSSP in Section 5.

2 High-level Description of Underlying Ideas
In the following two subsections, we will describe the main ideas underlying our approach from
a high-level perspective. The first part covers the gradient descent method for asymmetric
transshipment and in the second part we describe how it can be implemented in distributed
and streaming models of computation. For a complete description including all proofs see
Sections 3 and 4.

2.1 Gradient Descent for Asymmetric Transshipment

Let G = (V,E) be a (w.l.o.g. connected) graph with n nodes, m edges, positive integral
forward and backward edge weights w+, w− ∈ Zm≥1, and a demand vector b ∈ Zn on the
nodes. We split every edge e ∈ E into a forward arc (u, v) and a backward arc (u, v) such
that w+(u, v) ≥ w−(v, u), and denote by E+ and E− the sets of forward and backward
arcs, respectively. Let us denote W+ = diag(w+) ∈ Zm×m≥1 and W− = diag(w−) ∈ Zm×m≥1 .
Moreover, we will use W∗ := [W+ −W−]T for the composition of these weight matrices and
R∗ := [W−1

+ −W−1
−]T for the composition of their inverses. Moreover, let us, for a vector v ∈ Rd,

define the asymmetric norms p(v) :=
∑
i∈[d] max{0, vi} and q(v) := max{0,max{vi : i ∈ [d]}}.

The asymmetric shortest transshipment problem can then be written as a primal/dual pair
of linear programs, see Appendix B,

min{p(W∗x) : Ax = b} = max{bT y : q(R∗AT y) ≤ 1}, (1)
5Goldberg’s running time bound holds for integer-weighted graphs with most negative weight −N .

6

where A ∈ Rn×m is the node-arc incidence matrix of G with respect to the orientation of the
edges such that w+ ≥ w−. Let us denote λ := ‖W−1

− w+‖∞ ≥ 1. Note that, for instance, for the
s-t shortest path problem b is equal to 1t − 1s, and for the single-source shortest path problem
b is equal to 1−n1s. We remark that the symmetric undirected shortest transshipment problem,
which is in fact a 1-norm-minimization problem, can, for given weights w ∈ Zm≥1, be written as

min{‖Wx‖1 : Ax = b} = max{bT y : ‖W−1AT y‖∞ ≤ 1}, (2)

where W = diag(w) ∈ Rm×m. This is in fact a special case of the asymmetric shortest
transshipment problem, where w+ = w− and thus λ = 1.

In this section, we will describe a gradient descent method that, given an oracle that computes
α-approximate solutions to the symmetric undirected shortest transshipment problem, returns
primal and dual feasible solutions x and y to the asymmetric shortest transshipment problem
that are 1 + ε close to optimal, i.e., fulfill p(W∗x) ≤ (1 + ε)bT y, with O(ε−3λ4α2 logα logn)
calls to the oracle.

As our first step, we relate the dual of the asymmetric shortest transshipment problem to
another linear program that normalizes the objective to 1 and seeks to minimize q(R∗AT y):

min{q(R∗ATπ) : bTπ = 1}. (3)

We will denote by π∗ an optimal solution to this problem, whereas y∗ will denote an optimal
solution to the dual of the original problem (1). Notice that feasible solutions π of (3)
that satisfy q(R∗ATπ) > 0 are mapped to feasible solutions of the dual program in (1) via
f(π) := π/q(R∗ATπ). Similarly, feasible solutions y of the dual program in (1) that satisfy
bT y > 0 are mapped to feasible solutions of (3) via g(y) := y/bT y. Moreover, the map f(·)
preserves the approximation ratio. Namely, for any ε > 0, if π is a solution of (3) within factor
1 + ε of the optimum, then f(π) is feasible for (1) and within factor 1 + ε of the optimum. In
particular, f(π∗) is an optimal solution of (1).

We remark that there is also a clear relation between the asymmetric and the symmetric
version of the problem. Namely, an αλ-approximate solution to the asymmetric shortest
transshipment problem can be obtained from an α-approximate solution to a specific symmetric
transshipment problem, namely min{‖W−1

− AT π̄‖∞ : bT π̄ = 1}, which we call the symmetrized
problem for the given asymmetric instance.

Corollary 2.1. Let us denote with π̄∗ the optimal solution of min{‖W−1
− AT π̄‖∞ : bT π̄ = 1}

and let π̄ be a feasible solution to that problem such that ‖W−1
− AT π̄‖∞ ≤ α · ‖W−1

− AT π̄∗‖∞.
Then, π̄ is feasible for (3) and moreover q(R∗AT π̄) ≤ αλ · q(R∗ATπ∗).

One of our contributions lies in showing that given a primitive that gives a very bad
approximation, say logarithmic, to the symmetric shortest transshipment problem, a 1 + ε-
approximate solution even to the asymmetric shortest transshipment problem can be obtained
with a small number of iterations of a gradient descent method. Applying gradient descent
to (3) directly is however not feasible, since the objective is not differentiable, thus we change
the problem one more time by using the so-called soft-max (a.k.a. log-sum-exp or lse for

7

short), which is a suitable approximation for the infinity norm ‖ · ‖∞. It is defined for vectors
v ∈ Rd as lseβ(v) := 1

β ln
(∑

i∈[d] e
βvi
)
, where β > 0 is a parameter that controls the accuracy

of the approximation of the infinity-norm at the expense of smoothness. This enables us
to define a sufficiently smooth and accurate potential function Φβ(π) := lseβ(R∗ATπ), for
some parameter β that will be adapted during the course of the gradient descent method.
The algorithm takes as argument a starting-solution π that is an α-approximate solution to
the symmetrized problem, i.e., the symmetric shortest transshipment problem with weights
w−, see Corollary 2.1, an initial β that is appropriate for π, and the desired approximation
guarantee ε. The algorithm in every iteration updates the iterate using an α-approximate
solution to a symmetric shortest transshipment problem with a demand vector depending on
the gradient and weights w−. The algorithm, see Algorithm gradient_ust for a pseudo-code
implementation, returns potentials π ∈ Rn and the constant β (this will be of interest only
later when we consider the special case of the single source shortest path problem).

Algorithm 1: gradient_ust (G, b, π, β, ε)

// π is α-approximation to symmetrized problem, β such that Φβ(π) ∈ [4 ln(2m)
εβ , 5 ln(2m)

εβ]
// Invariant: bTπ = 11 repeat

2 while 4 ln(4m)
εβ ≥ Φβ(π) do β ← 5

4β.
3 P := [I − πbT], b̃ := P T∇Φβ(π)
4 Determine h̃ with ‖W−1

− AT h̃‖∞ = 1 and b̃T h̃ ≥ 1
α max{b̃Th : ‖W−1

− ATh‖∞ ≤ 1}
// h̃ can be obtained as an α-approximate solution of the transshipment problem
// with weights w− and demand vector P T∇Φβ(π).

5 Let δ := b̃T h̃
‖R∗ATP h̃‖∞

6 if δ > ε
8αλ2 then π ← π − δ

2β‖R∗ATP h̃‖∞
Ph̃.

7 until δ ≤ ε
8αλ2

8 return π, β

We will now show that a primal-dual pair that is (1 + ε)-close to optimal in (1) can be
constructed from the output potentials π and α-approximate primal and dual solutions to the
symmetrized problem that was solved in the last iteration of the algorithm. Note that if one is
only interested in a dual solution to (1), then also the α-approximate dual solution is enough
and thus also an oracle that provides a dual solution is sufficient.

Lemma 2.2 (Correctness). Let π ∈ Rn with bTπ = 1 be output by Algorithm gradient_ust.
Let x1 ∈ Rm such that Ax1 = ∇Φβ(π) and p(W∗x1) ≤ 1 + ε/8 and let x2 ∈ Rm such that
Ax2 = b̃ and ‖W−x2‖1 ≤ αb̃T h̃ for some h̃ ∈ Rn with ‖W−1

− AT h̃‖∞ ≤ 1. Then x := x1−x2
πT∇Φβ(π) ,

y := π
q(R∗AT π) satisfy Ax = b, q(R∗AT y) ≤ 1 and p (W∗x) ≤ (1 + ε)bT y.

Proof. First note that Ax = ∇Φβ(π)−b̃
πT∇Φβ(π) = b and q(R∗AT y) = 1, which establishes feasibility.

Now note that convexity of Φβ(·) and the choice of β yield πT∇Φβ(π) ≥ (1 − ε/4)Φβ(π) ≥

8

(1− ε/4)q(R∗ATπ) ≥ 0, see (12) in Section 3 for a detailed derivation of this estimate. Thus

p (W∗x) ≤ 1 + ε/8 + λ‖W−x2‖1
πT∇Φβ(π) ≤ 1 + ε/8 + αλb̃T h̃

πT∇Φβ(π) .

With the definition δ := b̃T h̃
‖R∗ATP h̃‖∞

from Algorithm 1, this yields

p (W∗x) ≤ 1 + ε/8 + αλδ‖R∗ATPh̃‖∞
πT∇Φβ(π) ≤ 1 + ε/8 + αλ2δ(1 + q(R∗ATπ)bT y∗)

(1− ε
4)q(R∗ATπ) ,

where the last inequality uses triangle inequality, ‖R∗ATπ‖∞ ≤ λq(R∗ATπ) and πT∇Φβ(π) ≥
(1− ε

4)q(R∗ATπ). Moreover, since bT y∗ ≤ p(W∗x) and bT y = 1/q(R∗ATπ), we conclude that
p (W∗x) ≤ (1 + ε

4)/(1− ε
2)bT y ≤ (1 + ε)bT y whenever δ ≤ ε

8αλ2 .

Observe that a suitable choice for x1 appears when applying the chain rule to deter-
mine ∇Φβ(π), i.e., we may set x1 := RT∗∇ lseβ(R∗ATπ), which satisfies Ax1 = ∇Φβ(π) and
p(W∗x1) ≤ 1 by (11). We can also obtain a tree solution xT that routes ∇Φβ(π) by sampling
from x1; we get xT such that p(W∗xT) ≤ 1 + ε/8 with high probability in O(logn

ε) trials. Note
that, unless we want a primal solution, it is not necessary to have x1 explicitly; knowing Ax1 is
sufficient. Lemma 2.2 then guarantees that the spanner augmented with the tree must contain
a (1 + ε)-approximate tree solution for the original problem. Moreover, we can compute such a
tree solution locally.

It remains to show a bound on the number of iterations that the algorithm needs. We will
obtain this bound by showing that the potential function decreases by a multiplicative factor
in each iteration.

Corollary 2.3 (Multiplicative Decrement of Φβ). Given π ∈ Rn and h̃ ∈ Rn such that
‖W−1
− AT h̃‖∞ ≤ 1 and suppose that β is such that εβΦβ(π) ≤ 5 ln(2m). Then for δ :=
b̃T h̃

‖R∗ATP h̃‖∞
, it holds that

Φβ

(
π − δ

2β‖R∗ATPh̃‖∞
Ph̃
)
≤
[
1− εδ2

20 ln(2m)
]
Φβ(π).

The proof, which uses properties of the potential function Φβ(·) such as convexity and
Lipschitz smoothness, can be found in Section 3. The above corollary is sufficient in order to
show the following bound on the number of iterations.

Lemma 2.4 (Number of Iterations). Suppose that 0 < ε ≤ 1/2. Then Algorithm gradient_ust
terminates within O([ε−3 + log λ+ logα]λ4α2 logn) iterations.

We conclude this paragraph with the following theorem summarizing our results so far.

Theorem 2.5. Given an oracle that computes an α-approximate solutions to the undirected
transshipment problem, using Algorithm gradient_ust, we can compute primal and dual
solutions x, y to the asymmetric shortest transshipment problem satisfying p(W∗x) ≤ (1+ε)bT y
with Õ(ε−3α2λ4) oracle calls.

9

Single-Source Shortest Paths. In the special case of single-source shortest paths, we have
bv = 1 for all v ∈ V \ {s} and bs = 1− n for the source s. In fact, it is the combination of n− 1
shortest s-t-path problems. Thus, the approximation guarantee from the previous section only
holds on average over all sink-nodes. However, we show how to use Algorithm gradient_ust
to obtain the distance from the source within a factor of 1 + ε for each node. To this end, we
use a little more precision so that we can recognize the nodes for which we know the distance
with sufficient accuracy using the tools we proposed above. We then concentrate on the other
nodes by adapting the demand vector b accordingly so that bv = 0 for all good nodes v, i.e.,
the nodes for which we already know the distance within a factor of 1 + ε. We iterate until all
nodes are good. This yields the following theorem, which is proven in Section 3.

Theorem 2.6. Let y∗ ∈ Rn denote the distances of all nodes from the source node s. There is
an algorithm that computes a vector y ∈ Rn with q(R∗AT y) ≤ 1 such that for each v ∈ V it
holds that y∗v/(1 + ε) ≤ yv ≤ y∗v with polylog(n, ‖w‖∞) calls to Algorithm gradient_ust.

2.2 Implementation in Various Models of Computation

Common to all our implementations is the use of sparse spanners.

Definition 2.7 (Spanner). Given a weighted graph G = (V,E,w) and α > 1, an α-spanner
of G is a subgraph (V,E′, w|E′), E′ ⊆ E, in which distances are at most by factor α larger than
in G.

In other words, a spanner removes edges from G while approximately preserving distances.
This implies that an optimal solution of an instance of the shortest transshipment problem on
an α-spanner of the input graph is an α-approximate solution to the original problem.

Broadcast Congested Clique. In the broadcast congested clique model, the system consists
of n fully connected nodes labeled by unique O(logn)-bit identifiers. Computation proceeds in
synchronous rounds, where in each round, nodes may perform arbitrary local computations,
broadcast (send) an O(logn)-bit message to the other nodes, and receive the messages from
other nodes. The input is distributed among the nodes. The first part of the input of every
node consists of its incident edges (given by their endpoints’ identifiers) and their weights. The
second part of the input is problem specific: for the transshipment problem, every node v
knows its demand bv and for SSSP v knows whether or not it is the source s. In both cases,
every node knows 0 < ε ≤ 1 as well. Each node needs to compute its part of the output. For
shortest transshipment every node needs to know a (1 + ε) approximation of the optimum
value, and for SSSP every node needs to know a (1 + ε)-approximation of its distance to the
source. The complexity of the algorithm is measured in the worst-case number of rounds until
the computation is complete.

Implementing our approach in this model is straightforward. The key observations are:

• Every node can locally aggregate information about its incident edges (e.g. concerning
the “stretches” under the potential of the current solution π) and make it known to all

10

other nodes in a single communication round. Thus, given β > 0 and π ∈ Rn, it is rather
straightforward to evaluate Φβ(π) and ∇Φβ(π) in a constant number of rounds.

• An O(logn)-spanner of the input graph can be computed and made known to all nodes
quickly (see Appendix A).

• Local computation then suffices to solve (sub)problems on the spanner optimally. In
particular, O(logn)-approximate solutions to (constrained) transshipment problems can
be computed easily, where it suffices to communicate the demand vector.

This leads to the following main results; for details we refer to Section 4.1.

Theorem 2.8. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to the shortest transshipment problem in undirected graphs with non-
negative weights can be computed in ε−3 polylogn rounds.

Theorem 2.9. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
weights can be computed in ε−9 polylogn rounds.

If in addition to the approximate dual solution to the transshipment problem, we also want
to obtain an approximate primal solution, we can do the following. After the last iteration of
the gradient descent algorithm (with gradient ∇Φβ(π)), we first locally compute for every node
the value of x1 := RT∗∇ lseβ(R∗ATπ) for its incident edges. We then compute a tree solution
x2 to the shortest transshipment on the spanner with demands b̃ := P T∇Φβ(π) and broadcast
it to all nodes. Now every node can compute, for its incident edges, the value of x from the
values of x1 and x2 as specified in Lemma 2.2.

To obtain a primal tree solution we sample a tree from x1 and make it known to all nodes.
Since we can use the gradient to orient the edges according to x1, obtaining a DAG, the
sampling can be performed locally at every node. We then compute a tree solution in the graph
combining the trees from x1 and the edges of the initial spanner locally at every node. To
obtain an approximate tree solution in the case of single-source shortest paths, we repeat the
sampling after every call of the gradient descent algorithm. We can then find the approximate
shortest path tree in the graph combining all sampled edges and the initial spanner. Since the
number of calls to the gradient descent algorithm is polylogn, the resulting graph is still small
enough so that we can make it known to every node and thus perform this computation locally
at every node.

Broadcast Congest Model. The broadcast congest model differs from the broadcast con-
gested clique in that communication is restricted to edges that are present in the input graph.
That is, node v receives the messages sent by node w if and only if {v, w} ∈ E. All other aspects
of the model are identical to the broadcast congested clique. We stress that this restriction
has significant impact, however: Denoting the hop diameter6 of the input graph by D, it is

6That is, the diameter of the unweighted graph G = (V, E).

11

straightforward to show that Ω(D) rounds are necessary to solve the transshipment problem.
Moreover, it has been established that Ω(

√
n/ logn) rounds are required even on graphs with

D ∈ O(logn) [DHK+12]. Both of these bounds apply to randomized approximation algorithms
(unless the approximation ratio is not polynomially bounded in n).

Our main result for this model is that we can match the above lower bounds for approximate
single-source shortest paths computation. The solution is based on combining a known reduction
to an overlay network on Θ̃(

√
n) nodes, simulating the broadcast congested clique on this

overlay, and applying Theorem 2.9. Simulating a round of the broadcast congested clique for
k nodes is done by pipelining each of the k messages over a breadth-first search tree of the
underlying graph, taking O(D + k) rounds. See Section 4.2 for details.

Corollary 2.10. For any 0 < ε ≤ 1, in the broadcast congest model a deterministic (1 + ε)-
approximation to single-source shortest paths in undirected graphs with non-negative weights
can be computed in Õ(ε−O(1)(

√
n+D)) rounds.

Multipass Streaming In the streaming model the input graph is presented to the algorithm
edge by edge as a “stream” without repetitions and the goal is to design algorithms that use as
little space as possible. In the multipass streaming model, the algorithm is allowed to make
several such passes over the input stream and the goal is to design algorithms that need only a
small number of passes (and again little space). For graph algorithms, the usual assumption is
that the edges of the input graph are presented to the algorithm in arbitrary order.

The main observation is that we can apply the same approach as before with O(n logn)
space: this enables us to store a spanner throughout the entire computation, and we can keep
track of intermediate (node) state vectors. Any computations on the spanner are thus “free,”,
while Φβ(π) and ∇Φβ(π) can be evaluated in a single pass by straightforward aggregation. With
this in mind, it is straightforward to show that ε−O(1) polylogn passes suffice for completing
the computation.

Theorem 2.11. For any 0 < ε ≤ 1, in the multipass streaming model a deterministic (1 + ε)-
approximation to the shortest transshipment problem in undirected graphs with non-negative
weights can be computed in ε−3 polylogn passes with O(n logn) space.

Theorem 2.12. For any 0 < ε ≤ 1, in the multipass streaming model, deterministic (1 + ε)-
approximation to single-source shortest paths in undirected graphs with non-negative weights
can be computed in ε−9 polylogn passes with O(n logn) space.

3 Solving the Asymmetric Transshipment Problem
In this section we give a complete presentation of the gradient descent method described
in Section 2.1. We consider (1 + ε)-approximation algorithms for the asymmetric shortest
transshipment problem without capacity constraints on a (w.l.o.g. connected) undirected graph
G = (V,E) with n nodes, m edges, and positive integer forward and backward edge weights
w+, w− ∈ Zm≥1. Note that excluding 0 as edge-weight is a mild restriction because we can

12

always generate new weights w′ with w′e = 1 + dn/εe · we while preserving at least one of the
shortest paths between each pair of nodes as well as (1 + ε)-approximations. We split every
edge e ∈ E into a forward arc (u, v) and a backward arc (u, v) such that w+(u, v) ≥ w−(v, u),
and denote by E+ and E− the sets of forward and backward arcs, respectively. Let us denote
W+ = diag(w+) ∈ Rm×m and W− = diag(w−) ∈ Rm×m and

W∗ :=
[
W+
−W−

]
and R∗ :=

[
W−1

+
−W−1

−

]
.

Let us, w.l.o.g. fix an orientation of the edges such that w+ ≥ w− and denote λ := ‖W−1
− w+‖∞ ≥

1 the maximal ratio between a forward and a backward arc.
Moreover, let us, for a vector v ∈ Rd, define the following asymmetric norms

p(v) :=
∑
i∈[d]

max{0, vi} and q(v) := max{0,max{vi : i ∈ [d]}}.

The asymmetric transshipment problem can then be written as a primal/dual pair of linear
programs (see Appendix B):

min{p(W∗x) : Ax = b} = max{bT y : q(R∗AT y) ≤ 1}, (1)

where A ∈ Rn×m is the node-arc incidence matrix of G with respect to the orientation of the
edges picked as described above and b ∈ Zn is the demand vector. For instance, b is equal
to 1t − 1s for the s-t shortest path problem and 1− n1s for the single-source shortest paths
problem. We remark that this is different from the symmetric version of the transshipment
problem, which is in fact a 1-norm-minimization problem and can, for given weights w ∈ Zm≥1
be written as

min{‖Wx‖1 : Ax = b} = max{bT y : ‖W−1AT y‖∞ ≤ 1}, (2)

where W = diag(w) ∈ Rm×m.
Note that by weak duality for the linear program pair in (1), we obtain that for any x ∈ Rm

with Ax = b and y ∈ Rn with q(R∗AT y) 6= 0, it holds that

bT
y

q(R∗AT y) ≤ p(W∗x), and thus xTAT y ≤ p(W∗x)q(R∗AT y). (4)

We remark that the above inequality holds for an arbitrary right hand side b ∈ Rn. Moreover,
q(R∗ATh) can be bounded in terms of ‖R∗ATh‖∞ = ‖W−ATh‖∞ as follows

‖W−ATh‖∞
λ

≤ q(R∗ATh) ≤ ‖W−ATh‖∞. (5)

In the following, we consider G and b to be fixed, and denote by y∗ an optimal solution of
the dual program, i.e., bT y∗ = max{bT y : q(R∗AT y) ≤ 1}. W.l.o.g., we restrict to feasible and
non-trivial instances, i.e., bT1 = 0 and b 6= 0. As our first step, we relate the dual program

13

to another linear program that normalizes the objective to 1 and seeks to minimize q(R∗AT y)
instead:

min{q(R∗ATπ) : bTπ = 1}.

We will denote by π∗ an optimal solution to this problem.

Observation 3.1. 1. Feasible solutions π of (3) that satisfy q(R∗ATπ) > 0 are mapped to
feasible solutions of the dual in (1) via f(π) := π

q(R∗AT π) . Feasible solutions y of the dual
in (1) that satisfy bT y > 0 are mapped to feasible solutions of (3) via g(y) := y

bT y
.

2. The map f(·) preserves the approximation ratio. Namely, for any ε > 0, if π is a solution
of (3) within factor 1 + ε of the optimum, then f(π) is feasible for (1) and within factor
1 + ε of the optimum. In particular, f(π∗) is an optimal solution of (1).

In other words, it is sufficient to determine a (1 + ε)-approximation to (3) in order to obtain
a (1 + ε)-approximation to (1). Another observation is that an αλ-approximate solution to
the asymmetric transshipment problem can be obtained from an α-approximate solution to a
specific symmetric transshipment problem, which we call the symmetrized problem.

Corollary (Restatement of Corollary 2.1). Let us denote with π̄∗ the optimal solution of
min{‖W−1

− ATπ‖∞ : bTπ = 1} and let π̄ be a feasible solution to that problem such that
‖W−1
− AT π̄‖∞ ≤ α · ‖W−1

− AT π̄∗‖∞. Then, π̄ is feasible for (3) and moreover q(R∗AT π̄) ≤
αλ · q(R∗ATπ∗).

Proof. Feasibility is trivial. For the approximation ratio consider the following estimate, which
uses that ‖R∗ATπ‖∞ = ‖W−1

− ATπ‖∞ for any π and the inequalities in (5):

q(R∗AT π̄) ≤ ‖R∗AT π̄‖∞ = ‖W−1
− AT π̄‖∞ ≤ α‖W−1

− AT π̄∗‖∞ ≤ α‖W−1
− ATπ∗‖∞

= α‖R∗ATπ∗‖∞ ≤ αλ · q(R∗ATπ∗).

One of our contributions, lies in showing that given a primitive that gives a very bad approx-
imation, say logarithmic, to the symmetric transshipment problem, a 1+ε-approximate solution
even to the asymmetric transshipment problem can be obtained with poly-logarithmically many
iterations of a gradient descent method. However, the objective of (3) is not differentiable, so
we change the problem one more time by using the so-called soft-max (a.k.a. log-sum-exp or
lse for short), which is a suitable approximation for ‖ · ‖∞. It is defined for vectors v ∈ Rd as

lseβ(v) := 1
β

ln

∑
i∈[d]

eβvi

 ,
where β > 0 is a parameter that controls the accuracy of the approximation of the infinity-norm
at the expense of smoothness.7 This enables us to define a sufficiently smooth and accurate
potential function

Φβ(π) := lseβ(R∗ATπ),
7Note that for the gradient ∇ lseβ(x) of the soft-max, we have that ∇ lseβ(x)i = eβxi∑

j∈[d]
e
βxj

for all i ∈ [d].

14

for some parameter β that will be adapted during the course of the gradient descent. The
algorithm takes as arguments the graph G, a demand vector b, a starting-solution π that is an
α-approximate solution, an initial β that is appropriate for π, and the desired approximation
guarantee ε.

Before showing the correctness and the running-time guarantee for the algorithm, we state
some known facts (cf. for example [She13]) about lseβ(·). For x, y being d-dimensional vectors
and β, t being positive scalars, it holds that

lset·β(x/t) = lseβ(x)/t (6)
∇ lset·β(x/t) = ∇ lseβ(x) (7)
‖∇ lseβ(x)‖1 ≤ 1 (8)

‖∇ lseβ(x)−∇ lseβ(y)‖1 ≤ β‖x− y‖∞, (9)

Note that the last inequality means that the gradient of lseβ(·) is Lipschitz continuous with
Lipschitz constant β. Moreover, note that since Φβ(π) := lseβ(R∗ATπ) is a composition of an
linear and a convex function, it is again convex and thus Φβ(π) ≤ Φβ(0) +∇Φβ(π)Tπ. Together
with duality (4), this yields

Φβ(π) ≤ Φβ(0) +∇Φβ(π)Tπ = ln(2m)
β

+∇ lseβ(R∗ATπ)TR∗ATπ

≤ ln(2m)
β

+ p(W∗RT∗∇ lseβ(R∗ATπ)) · q(R∗ATπ) ≤ ln(2m)
β

+ q(R∗ATπ),
(10)

where the latter inequality follows from

p(W∗RT∗∇ lseβ(R∗ATπ)) ≤ 1, (11)

which is the asymmetric analogue of (8). A derivation can be found in Appendix C.
On the other hand convexity, and our choice of β, namely Φβ(π) ∈ [4 ln(2m)

εβ , 5 ln(2m)
εβ], gives

∇Φβ(π)Tπ ≥ Φβ(π)− ln(2m)
β

≥
(

1− ε

4

)
Φβ(π) ≥

(
1− ε

4

)
q(R∗ATπ) ≥ 0, (12)

where the second to last inequality follows since

lseβ(R∗ATπ) = 1
β

ln
(∑
a∈A

eβ(πw−πv)/w+
a + eβ(πv−πw)/w−a

)
≥ 1
β

ln eβq(R∗AT π) = q(R∗ATπ).

Inequality (12) is what we used in the proof of Lemma 2.2 in Section 2.1, where we have
shown that one can obtain a primal-dual (1 + ε)-approximately optimal pair from the output
potentials π of Algorithm gradient_ust. However, for the bound on the iterations, we left
some proofs open that we will provide in the rest of this section.

We will first show that the potential function decreases by a multiplicative factor in each
iteration. Notice that the gradient8 of the potential function Φβ(π) takes the form

∇Φβ(π) = ART∗∇ lseβ(R∗ATπ) = ART∗ γβ(π),
8We remark that ∇f(x) is short term for ∇xf(x) for any function f , i.e., the gradient is w.r.t. the argument

of the function following it, if the subscript is omitted.

15

where we denote γβ(π) := ∇ lseβ(R∗ATπ) ∈ R2m.

Lemma 3.2. Given π ∈ Rn, let P := [I − πbT]. For any h ∈ Rn, it holds that

Φβ

(
π − Ph

)
− Φβ(π) ≤ −b̃Th+ β‖R∗ATPh‖2∞,

where b̃ = P T∇Φβ(π).

Proof. By convexity of the potential function, we have

Φβ

(
π − Ph

)
− Φβ(π) ≤ −∇Φβ

(
π − Ph

)T
Ph

= −∇Φβ(π)TPh+
[
∇Φβ(π)−∇Φβ

(
π − Ph

)]T
Ph

= −b̃Th+
[
γβ(π)− γβ

(
π − Ph

)]T
R∗A

TPh.

Using Hölder’s inequality, we conclude that

Φβ

(
π − Ph

)
− Φβ(π) ≤ −b̃Th+ ‖γβ(π)− γβ

(
π − Ph

)
‖1‖R∗ATPh‖∞

(9)
≤ −b̃Th+ β‖R∗ATPh‖2∞.

Corollary (Restatement of Corollary 2.3). Given π ∈ Rn with bTπ = 1 and h̃ ∈ Rn such
that ‖W−1

− AT h̃‖∞ ≤ 1 and suppose that β is such that εβΦβ(π) ≤ 5 ln(2m). Then for
δ := b̃T h̃

‖R∗ATP h̃‖∞
, it holds that

Φβ

(
π − δ

2β‖R∗ATPh̃‖∞
Ph̃
)
≤
[
1− εδ2

20 ln(2m)
]
Φβ(π).

Proof. Applying Lemma 3.2 and ‖R∗ATPh̃‖∞ ≤ 1, yields

Φβ

(
π − δ

2β‖R∗ATPh̃‖∞
Ph̃
)
− Φβ(π) ≤ − δb̃T h̃

2β‖R∗ATPh̃‖∞
+ δ2

4β = − δ
2

4β

By the choice of β, it follows that − δ2

4β ≤ −
εδ2

20 ln(2m)Φβ(π).

Lemma (Restatement of Lemma 2.4). Suppose that 0 < ε ≤ 1/2. Then Algorithm gradient_ust
terminates within O([ε−3 + log λ+ logα]λ4α2 logn) iterations.

Proof. Note that for all x ∈ Rn, ∇β lseβ(x) ≤ 0, i.e., lseβ is decreasing as function of β and thus
the while-loop that scales β up does not increase Φβ(π). Denoting π0 and β0 the initial values
of β and π, respectively and π and β the values at termination, it follows by Corollary 2.3,
that the potential decreases by a factor of 1− εδ2

20 ln(2m) ≤ 1− ε3

640α2λ4 ln(2m) . Thus the number
of iterations k can be bounded by

k ≤ log
(Φβ(π)

Φβ0(π0)
)[

log
(
1− ε3

640α2 ln(2m)
)]−1

≤ log
(Φβ0(π0)

Φβ(π)
)640α2λ4 ln(2m)

ε3 .

16

It remains to bound the quotient Φβ0 (π0)
Φβ(π) . We will use our oracle for the symmetrized problem

to produce a starting solution that is an αλ-approximate solution for the asymmetric problem.
Using that the algorithm chooses β0 such that 4 ln(2m) ≤ εβ0Φβ0(π0) shows that

Φβ0(π0) = lseβ0(R∗ATπ0)
(10)
≤ q(R∗ATπ0) + ln(2m)

β0
≤ αλq(R∗ATπ∗) + εΦβ0(π0)

4

and thus Φβ0(π0) ≤ αλq(R∗AT π∗)
1−ε/4 . On the other hand Φβ(π) ≥ q(R∗ATπ) ≥ q(R∗ATπ∗) and

thus Φβ0 (π0)
Φβ(π) ≤

αλ
1−ε/4 = O(αλ). Since we can first run our gradient descent with ε = 1/2 until

we obtain a constant factor approximation before we use the desired accuracy, it follows that
the total number of iterations is in O([ε−3 + log λ+ logα]λ4α2 logn).

3.1 Single-Source Shortest Paths

In the special case of single-source shortest paths, we have bv = 1 for all v ∈ V \ {s} and
bs = 1− n for the source s. In fact, it is the combination of n− 1 shortest s-t-path problems.
Thus, the approximation guarantee from the previous section only holds on average over all
sink nodes. In the following, we show how to use Algorithm 1 to obtain the distance from
the source within a factor of 1 + ε for each node. To this end, we use a little more precision
so that we can recognize the nodes for which we know the distance with sufficient accuracy
using the tools we proposed above. We then concentrate on the other nodes and adapt the
demand-vector b accordingly so that bv = 0 for all good nodes v, i.e., the nodes for which we
know the distance within a factor of 1 + ε. We iterate until all nodes are good. It remains to
show how to recognize good nodes and that a constant fraction of the nodes become good in
each iteration.

Let y∗ ∈ Zn denote the vector of distances from the source and let y ∈ Rn be our current
estimates of the distances. A node v ∈ V is called ε-good if y∗v/(1 + ε) ≤ yv ≤ y∗v . First, we
show that we cannot be too close to the optimum when the stopping criterion is not reached
yet.

Lemma 3.3. If the termination criterion is not met for y yet, i.e., δ > ε
4αλ2 , then

Φβ·bT y(y
bT y

) > 1 + ε′

bT y∗
, where ε′ := ε3

640λ4α2 ln(2m) .

Proof. Let π′ ∈ Rn be the vector obtained by updating π := y
bT y

as described in Algo-
rithm gradient_ust, i.e., π′ = π − δP h̃/(2β‖R∗ATPh̃‖∞), where h̃ is an α-approximate
solution of the optimization problem max{b̃Th : ‖W−1

− ATh‖∞ ≤ 1}. Then, using δ > ε
4αλ2 ,

Corollary 2.3 together with (6), and the fact that q(R∗ATπ∗) = 1
bT y∗

, which we conclude from
Observation 3.1, we get

(
1− ε′

)
Φβ·bT y(π) >

(
1− εδ2

20 ln(2m)

)
Φβ·bT y(π) ≥ Φβ·bT y(π′) ≥ q(R∗ATπ′) ≥

1
bT y∗

.

This implies Φβ·bT y(y
bT y

) > 1
(1−ε′)bT y∗ ≥

1+ε′
bT y∗

.

17

Next, we show that a 1 + ε′ on average guarantee implies that bT y∗ reduces by at least a
constant factor when we set bv = 0 for all 2ε′-good nodes.

Lemma 3.4. Let bv ≥ 0 for all v ∈ V \{s}, y ∈ Rn with q(R∗AT y) = 1, ys = 0 and bT y ≥ bT y∗

1+ε′ ,
and let X := {v ∈ V \ {s} : yv < y∗v/(1 + 2ε′)} for some ε′ ≤ 1

4 . Then,
∑
v∈X bvy

∗
v ≤ 3

4b
T y∗.

Proof. We have that

ε′
∑
v∈X

bvyv ≤ ε′
∑
v∈X

bvyv + (1 + ε′)bT y − bT y∗

= (1 + 2ε′)
∑
v∈X

bvyv + (1 + ε′)
∑

v∈V \X
bvyv − bT y∗

<
∑
v∈X

bvy
∗
v + (1 + ε′)

∑
v∈V \X

bvyv − bT y∗

= (1 + ε′)
∑

v∈V \X
bvyv −

∑
v∈V \X

bvy
∗
v

≤ ε′
∑

v∈V \X
bvyv,

where the last inequality follows from the observation that q(R∗AT y) = 1 guarantees that
yv ≤ y∗v for all v ∈ V , the fact that bv ≥ 0 for all v ∈ V \X \ {s} and the assumption that
ys = 0. It follows that

∑
v∈V \X bvyv ≥ 1

2b
T y and thus for ε′ ≤ 1

4 , it follows that∑
v∈X

bvy
∗
v = bT y∗ −

∑
v∈V \X

bvy
∗
v ≤ (1 + ε′)bT y −

∑
v∈V \X

bvyv <

(1
2 + ε′

)
bT y ≤ 3

4b
T y∗.

We are now ready to state the algorithm.

Algorithm 2: single_source_shortest_path (G, s, ε)
1 Compute an α-approximate solution y, let ŷ = 0 and set b = 1− n1s
2 Determine β s.t. 4 ln(2m) < εβΦβ(y) ≤ 5 ln(2m).
3 while bs < 0 do
4 π, β = gradient_ust

(
G, b, y

bT y
, β · bT y, ε3

640α2 ln(2m)
)
, y = π

q(R∗AT π)
5 for each v ∈ V with bv = 1 do
6 Determine h̃ with ‖W−1

− AT h̃‖∞ = 1 and
b̃T h̃ ≥ 1

α max{∇Φβ(y)Th : ‖W−1
− ATh‖∞ ≤ 1}, let δ := ∇Φβ(y)T h̃

R∗ATP h̃

7 if δ ≤ ε
8αλ2 then

8 Set bv = 0, ŷv = yv − ys and bs ← bs + 1

9 return ŷ

We show that the above algorithm outputs 1 + ε-approximate distances for all nodes:

18

Theorem (Restatement of Theorem 2.6). Algorithm single_source_shortest_path com-
putes y such that for each v ∈ V it holds that y∗v/(1 + ε) ≤ yv ≤ y∗v with polylog(n, ‖w‖∞) calls
to Algorithm gradient_ust.

Proof. Consider one iteration of Algorithm single_source_shortest_path. W.l.o.g., we
assume that ys = 0. From Lemma 2.2 and weak duality, we get that bT y ≥ bT y∗/(1 + ε′) for the
returned solution y of Algorithm gradient_ust. Then, by Lemma 3.4, we conclude that there
is a set of “good nodes” U := {v ∈ V : y∗v ≥ yv ≥ y∗v/(1 + 2ε′)} such that

∑
v∈U bvy

∗
v ≥ 1

4b
T y∗

and it follows that

(1v − 1s)T y = yv ≥
y∗v

1 + 2ε′ = (1v − 1s)T y∗

1 + 2ε′ for every v ∈ U.

Since Φβ(y
bT y

) ≤ 1+ε′/4
bT y

≤ (1+ε′/4)(1+ε′)
bT y∗

≤ 1+2ε′
bT y∗

, it follows with Lemma 3.3 that for an h̃

such that ‖W−1
− AT h̃‖∞ = 1 and b̃T h̃ < 1

α max{∇Φβ(y)Th : ‖W−1
− ATh‖∞ ≤ 1}, it holds that

δ ≤ ε
4αλ2 , where δ := b̃T h̃

‖R∗ATPπ‖∞ . Thus we will recognize every node v ∈ U as good in this
iteration.9 It follows that, in each iteration, bT y∗ = O(‖w‖∞n2) gets reduced by at least a
constant fraction 1/4 and thus after polylog(n, ‖w‖∞) many iterations, the while-loop in the
algorithm terminates and ŷ contains a (1 + ε)-approximate distance for every vertex v ∈ V .

3.2 Finding a Tree Solution

Recall from Lemma 2.2 that, given a near optimal dual solution, we can construct a primal
approximate solution from a flow x1 that routes the gradient and from a flow x2 that routes the
projection of the gradient. The natural choice for x1 comes from the gradient of the softmax,
i.e., x1 := RT∗∇ lseβ(R∗ATπ). However, the support of such an x1 is rather dense in general.
So, we cannot afford to make x1 global knowledge in distributed models of computation or
store it with near linear space in streaming models. Hence, we cannot directly transform x1 to
a tree solution using a global view on the problem. We could steer clear from this problem
if x1 had a small support, e.g., like a tree solution. In fact, Lemma 2.2 shows that we can
afford to be a little worse in the objective value than the canonical choice for x1. This suggests
to randomly sample a tree such that the expected flow over an edge equals the value of the
canonical choice and thus to obtain the same objective value in expectation. Repetition and
Markov’s inequality would then yield a suitable tree in O(logn

ε) trials with high probability.
Note that for this sampling the previously fixed orientation does not matter, so we reorient the
edges such that each entry in the vector of the canonical choice for x1 becomes non-negative
for the sake of exposition. W.l.o.g., we may discard edges with zero flow. By the construction
of the gradient from potential differences, the resulting graph then becomes acyclic and thus
admits a topological order of the nodes. Each node v now samples one of its incoming arcs with
probability x1(a)/x1(δin(v)) for each a ∈ δin(v). By induction from the last to the first node
in the topological order, one can show that the expected flow over arc a is then equal to xa.

9Note that due to (7), it holds that ∇Φβ(y) = ∇Φ(1v−1s)T yβ(y

(1v−1s)T y) and in particular the same gradient
can be used for all v ∈ V \ {s}.

19

Moreover, we thereby obtain a tree because the first node in the topological order does not
have any incoming arc. By the linearity of expectation in the equivalent linearized objective
function (cf. Appendix B), the expected objective value of the sampled tree solution equals the
objective value of the canonical solution for x1, which is upper bounded by 1. Any reorientation
can be revoked now without changing the result. The edges of the tree can now be stored or
communicated, e.g., to augment a spanner such that the resulting graph is guaranteed to have
a tree solution that is (1 + ε)-approximate for the problem with the original demands.

4 Applications
In the following we explain how to implement the gradient descent algorithm for computing
(1 + ε)-approximate shortest transshipment and SSSP in distributed and streaming models.
Common to all these implementations is the use of sparse spanners. We restate the definition
here.

Definition 2.7 (Spanner). Given a weighted graph G = (V,E,w) and α > 1, an α-spanner
of G is a subgraph (V,E′, w|E′), E′ ⊆ E, in which distances are at most by factor α larger than
in G.

In other words, a spanner removes edges from G while approximately preserving distances.
This implies that an optimal solution of an instance of the shortest transshipment problem
on an α-spanner of the input graph is an α-approximate solution to the original problem. We
give deterministic algorithms for computing spanners in distributed and streaming models in
Appendix A.

4.1 Broadcast Congested Clique

Model. In the Broadcast Congested Clique model, the system consists of n fully connected
nodes labeled by unique O(logn)-bit identifiers. Computation proceeds in synchronous rounds,
where in each round, nodes may perform arbitrary local computations, broadcast (send) an
O(logn)-bit message to the other nodes, and receive the messages from other nodes. The input
is distributed among the nodes. The first part of the input of every node consists of its incident
edges (given by their endpoints’ identifiers) and their weights. The second part of the input is
problem specific: for the transshipment problem, every node v knows its demand bv and for
SSSP v knows whether or not it is the source s. In both cases, every node knows 0 < ε ≤ 1/2
as well. Each node needs to compute its part of the output. For shortest transshipment every
node needs to know a (1 + ε) approximation of the optimum value, and for SSSP every node
needs to know a (1 + ε)-approximation of its distance to the source. The complexity of the
algorithm is measured in the worst-case number of rounds until the computation is complete.

Implementing Algorithm gradient_ust. In the following, we explain how to implement
our gradient descent algorithm for approximating the shortest transshipment.

20

Theorem 2.8. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to the shortest transshipment problem in undirected graphs with non-
negative weights can be computed in ε−3 polylogn rounds.

The rest of this subsection is devoted to proving the theorem. In the following description
of the algorithm we assume that we can use the following two algorithmic primitives. We will
argue after the algorithm’s description that they can be carried out within the stated running
time bounds.

(A) Given β > 0 and π ∈ Rn known to every node, compute, and make known to every node,
Φβ(π) and ∇Φβ(π) using a constant number of rounds.

(B) Given an α-spanner G′ of G− = (V,E,w−) and q ∈ Rn known to every node, compute, at
every node, h̃ ∈ Rn such that ‖W−1

− AT h̃‖∞ = 1 and qT h̃ ≥ max 1
α{q

Th : ‖W−1
− ATh‖∞ ≤

1}, using only local computation.

We now describe how to implement the gradient descent algorithm algorithm. We will
maintain the invariant that each node knows π and the current value of β at the beginning of
each iteration of the algorithm.

1. Make n, m, b, λ, and the set of node identifiers known to all nodes in a single round by
each node v broadcasting its identifier, bv, degree in the input graph, and maximum ratio
between forward and backward cost of incident edges.

2. Next, construct an α-spanner G′ of G− = (V,E,w−) with α = 2dlogne − 1 in O(log2 n)
rounds using the algorithm of Corollary A.1 in Appendix A.

3. Locally at every node, compute an α-approximate solution π to the symmetrized shortest
transshipment problem with demands b using (B) with q := b.

4. Compute and make known to every node Φβ(π) using (A) in a constant number of rounds.

5. Locally at every node, check if 4 ln(4m)
εβ ≥ Φβ(π). If not, locally at every node scale up β

by 5/4 and proceed with Step 4.

6. Compute and make known to every node ∇Φβ(π) using (A) in a constant number of
rounds.

7. Locally at every node, compute P = I − πbT and b̃ = P T∇Φβ(π).

8. Locally at every node, determine h̃ such that ‖W−1
− AT h̃‖∞ = 1 and b̃T h̃ ≥ 1

α max{b̃Th :
‖W−1
− ATh‖∞ ≤ 1} using (B) with q := b̃, performing only local computation.

9. Compute ‖R∗ATPh̃‖∞ in a single round. (Every node first locally computes Ph̃ and
determines from π the maximum value of (R∗ATPh̃)(u,v) among its incoming forward
and backward arcs (u, v). The nodes then broadcast these values such that every node
can determine the maximum among the received values and its own value.)

21

10. Locally at every node, compute δ := b̃T h̃
‖R∗ATP h̃‖∞

and check if δ ≥ ε
8αλ2 . If yes, locally at

every node, compute π := π − δ
2β‖R∗ATP h̃‖∞

Ph̃ and proceed with the next iteration at
Step 4.

11. At termination, compute f(π) := π
q(R∗AT π) as the output in a single round. (Every node

first locally determines from π the maximum value of (R∗ATπ)(u,v) among its incoming
forward and backward arcs (u, v). The nodes then broadcast these values such that every
node can determine the maximum among the received values, its own value, and 0).

Apart from repetitions of Step 4 for scaling up β we need a constant number of rounds
per iteration. As there are ε−3 polylogn iterations by Lemma 2.4 and we scale up β at most
O(logn) times over the course of the algorithm, we use ε−3 polylogn rounds as promised in
Theorem 2.8. It remains to show how to perform primitives (A) and (B).

Primitive (A). For every forward arc (u, v) ∈ E+ define the forward stretch under poten-
tials π by

s+
π (u, v) := πv − πu

w+(a)

and for every backward arc (u, v) ∈ E− define the backward stretch under potentials π by

s−π (u, v) := πv − πu
w−(a) .

Note that R∗ATπ is the vector containing first the forward stretches and then the backward
stretches of the arcs under potential π. For every node v, let av and bv, respectively, be the
following sum over its incoming forward and outgoing arcs:

av :=
∑

(u,v)∈E+

eβs
+
π (u,v) +

∑
(v,u)∈E−

eβs
−
π (v,u)

bv :=
∑

(u,v)∈E+

eβs
+
π (u,v)

w+(u, v) +
∑

(u,v)∈E−

eβs
−
π (u,v)

w−(u, v) −
∑

(v,u)∈E+

eβs
+
π (v,u)

w+(v, u) −
∑

(v,u)∈E−

eβs
−
π (v,u)

w−(v, u) .

and let s be the following sum over all arcs

s :=
∑

(u,v)∈E+

eβs
+
π (u,v) +

∑
(v,u)∈E−

eβs
−
π (v,u) =

∑
v∈V

av .

Thus,

Φβ(π) = lseβ(R∗ATπ) = 1
β

ln

 ∑
(u,v)∈E+

eβs
+
π (u,v) +

∑
(v,u)∈E−

eβs
−
π (v,u)

 = ln s

β

22

and, for every node v,

∇Φβ(π)v = ART∗∇ lseβ(R∗ATπ) =∑
(u,v)∈E+

eβs
+
π (u,v)

w+(u, v) · s+
∑

(u,v)∈E−

eβs
−
π (u,v)

w−(u, v) · s−
∑

(v,u)∈E+

eβs
+
π (v,u)

w+(v, u) · s−
∑

(v,u)∈E−

eβs
−
π (v,u)

w−(v, u) · s = bv
s
.

As every node v knows its incident arcs and their respective weights, it can locally compute av
and bv, respectively. In one round of communication all nodes can learn the value av of every
other node v. Once these values are known, each node can locally compute Φβ(π) as well as s
and ∇Φβ(π)v. Simultaneously for every node v, we send the latter value to all its neighbors in
one round such that every node knows ∇Φβ(π)v afterwards.

Primitive (B). We use the fact that an α-spanner G′ of G− = (V,E,w−) is known to every
node. In particular, every node can locally construct the node-arc incidence matrix A′ and the
diagonal weight matrix W ′ of G′. Thus, each node can locally compute an optimal solution h′
to the linear program max{qTh : ||(W ′)−1(A′)Th||∞ = 1}.10 We now claim that h̃ := h′/α has
the desired properties.

Lemma 4.1. Let q ∈ Rn and let G′ be an α-spanner of G− = (V,E,w−). Let A, A′, W−, and
W ′ denote the node-arc incident matrices and the weight matrices of G− and G′, respectively.
Let h′ be an optimal solution to the linear progam max{qTh : ||(W ′)−1(A′)Th||∞ ≤ 1} and set
h̃ := h′/α. Then ‖W−1

− AT h̃‖∞ ≤ 1 and αqT h̃ ≥ max{qTh : ‖W−1
− ATh‖∞ ≤ 1}.

Proof. As the spanner is a subgraph, max{qTh : ||(W ′)−1(A′)Th||∞ ≤ 1} ≥ max{qTh :
‖W−1
− ATh‖∞ ≤ 1} and thus αqT h̃ = qTh′ ≥ max{qTh : ‖W−1

− ATh‖∞ ≤ 1}. Let (u, v) ∈ E−
be a backward arc and denote by p a shortest path between u and v in G . Then the stretch of
(u, v) in G under h′ is

|(W−1ATh′)(u,v)| =
|h′v − h′u|
w(u, v) ≤

∑
{u′,v′}∈p |h′v′ − h′u′ |

w(u, v)

=
∑

(u′,v′)∈pw(u′, v′)|((W ′)−1(A′)Th′)(u′,v′)|
w(u, v) ≤

∑
(u′,v′)∈pw(u′, v′)

w(u, v) ≤ α .

Thus, ‖W−1
− ATh′‖∞ ≤ α and consequently ‖W−1

− AT h̃‖∞ ≤ 1 for h̃ = h′/α.

Note that if ‖W−1
− AT h̃‖∞ < 1, we can simply “scale up” h̃ to get a solution with

‖W−1
− AT h̃‖∞ = 1.

Implementing Algorithm single_source_shortest_path. After computing an α-spanner,
we can implement Algorithm single_source_shortest_path using primitives (A) and (B) in
a straightforward way. The algorithm internally uses our implemention of gradient_ust with
an increased precision of ε′ = ε3/(640α2 ln (2m)). We thus arrive at the following theorem.

10In particular, we can locally run any shortest transshipment algorithm.

23

Theorem 2.9. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
weights can be computed in ε−9 polylogn rounds.

4.2 Broadcast Congest Model

Model. The broadcast congest model differs from the broadcast congested clique in that
communication is restricted to edges that are present in the input graph. That is, node v
receives the messages sent by node w if and only if {v, w} ∈ E. All other aspects of the model
are identical to the broadcast congested clique. We stress that this restriction has significant
impact, however: Denoting the hop diameter11 of the input graph by D, it is straightforward to
show that Ω(D) rounds are necessary to solve the transshipment problem. Moreover, it has been
established that Ω(

√
n/ logn) rounds are required even on graphs with D ∈ O(logn) [DHK+12].

Both of these bounds apply to randomized approximation algorithms (unless the approximation
ratio is not polynomially bounded in n).

Solving the Transshipment Problem. A straightforward implementation of our algorithm
in this model simply simulates the broadcast congested clique. A folklore method to simulate
(global) broadcast is to use “pipelining” on a breadth-first-search (BFS) tree.

Lemma 4.2 (cf. [Pel00]). Suppose each v ∈ V holds mv ∈ Z≥0 messages of O(logn) bits each,
for a total of M =

∑
v∈V mv strings. Then all nodes in the graph can receive these M messages

within O(M +D) rounds.

Proof Sketch. It is easy to construct a BFS tree in O(D) rounds (rooted at, e.g., the node with
smallest identifier) and obtain an upper bound d ∈ [D, 2D] by determining the depth of the
tree and multiplying it by 2. By a convergecast, we can determine |M |, where each node in the
tree determines the total number of messages in its subtree. We define a total order on the
messages via lexicographical order on node identifier/message pairs.12 Then nodes flood their
messages through the tree, where a flooding operation for a message may be delayed by those
for other messages which are smaller w.r.t. the total order on the messages. On each path,
a flooding operation may be delayed once for each flooding operation for a smaller message.
Hence, this operation completes within O(D + |M |) rounds, and using the knowledge on d
and M , nodes can safely terminate within O(d+ |M |) = O(D + |M |) rounds.

We obtain the following corollary to Theorem 2.8.

Corollary 4.3. For any 0 < ε ≤ 1, in the broadcast congest model a deterministic (1 + ε)-
approximation of (1) can be computed in Õ(ε−3n) rounds.

Proof. Simulate a round on the broadcast congested clique using Lemma 4.2, i.e., with parame-
ters |M | = n and D ≤ n. Applying Theorem 2.8, the claim follows.

11That is, the diameter of the unweighted graph G = (V, E).
12W.l.o.g., we assume identifier/message pairs to be different.

24

Special Case: Single-Source Shortest Paths. The near-linear running time bound of
Corollary 4.3 is far from the Ω̃(

√
n+D) lower bound, which also applies to the single-source

shortest path problem. However, for this problem there is an efficient reduction to a smaller
skeleton graph, implying that we can match the lower bound up to polylogarithmic factors.
The skeleton graph is given as an overlay network on a subset V ′ ⊆ V of the nodes, where each
node in V ′ learns its incident edges and their weights.

Theorem 4.4 ([HKN16]). Given any weighted undirected network G and source node s ∈ V ,
there is a Õ(

√
n)-round deterministic distributed algorithm in the broadcast congest model13

that computes an overlay network G′ = (V ′, E′) with edge weights w′ : E′ → {1, . . . ,polyn}
and some additional information for every node with the following properties.

• |V ′| = Õ(ε−1√n) and s ∈ V ′.

• For ε′ := ε/7, each node v ∈ V can infer a (1 + ε)-approximation of its distance to s
from (1 + ε′)-approximations of the distances between s and each t ∈ V ′.

This reduces the problem to a graph of roughly
√
n nodes, to which we can apply the

previous simulation approach.

Corollary 2.10. For any 0 < ε ≤ 1, in the broadcast congest model a deterministic (1 + ε)-
approximation to single-source shortest paths in undirected graphs with non-negative weights
can be computed in Õ(ε−O(1)(

√
n+D)) rounds.

Proof. We apply Theorem 4.4. Subsequently, we use Lemma 4.2 to simulate rounds of the
broadcast congested clique on the overlay network, taking Õ(ε−O(1)√n + D) rounds per
simulated round. Using Corollary 4.3 for ε′ ∈ Θ(ε), we obtain a (1 + ε′)-approximation to
the distances from each t ∈ V ′ to s in the overlay. After broadcasting these distances using
Lemma 4.2 again, all nodes can locally compute a (1 + ε)-approximation of their distance to s.
The total running time is Õ(ε−O(1)(

√
n+D)).

4.3 Multipass Streaming

Model. In the Streaming model the input graph is presented to the algorithm edge by edge
as a “stream” without repetitions and the goal is to design algorithms that use as little space
as possible. In the Multipass Streaming model, the algorithm is allowed to make several such
passes over the input stream and the goal is to design algorithms that need only a small number
of passes (and again little space). For graph algorithms, the usual assumption is that the edges
of the input graph are presented to the algorithm in arbitrary order.

13All communication of the algorithm in [HKN16] meets the constraint that in each round, each node sends
the same message to all neighbors (which is the difference between the broadcast congest and the standard
congest model used in [HKN16]).

25

Implementing Algorithm gradient_ust. In the following we explain how to implement
our gradient descent algorithm for approximating the shortest transshipment.

Theorem 2.11. For any 0 < ε ≤ 1, in the multipass streaming model a deterministic (1 + ε)-
approximation to the shortest transshipment problem in undirected graphs with non-negative
weights can be computed in ε−3 polylogn passes with O(n logn) space.

The rest of this subsection is devoted to proving the theorem. In the algorithm we will use
space O(n logn) to permanently store certain information. We will perform all operations of
the algorithm within an additional “temporary space” of size O(n logn), i.e., at any time the
sum of the permanent space and the temporary space is O(n logn). In the following description
of the algorithm we assume that we can use the following two algorithmic primitives. We will
argue after the algorithm’s description that they can be carried out within the stated running
time bounds.

(A) Given stored β > 0 and π ∈ Rn, compute Φβ(π) and ∇Φβ(π) using a single pass and
O(n) temporary space.

(B) Given a stored α-spanner G′ of G− = (V,E,w−) and stored q ∈ Rn, compute h̃ ∈ Rn
such that ‖W−1

− AT h̃‖∞ = 1 and qT h̃ ≥ 1
α max{qTh : ‖W−1

− ATh‖∞ ≤ 1} internally (i.e.
without additional passes) with O(n logn) temporary space

We reserve space O(n logn) to permanently store the following information throughout the
algorithm:

• An O(logn)-spanner G′ of G− = (V,E,w−) of size O(n logn).

• An n-dimensional vector π for the solution maintained by the gradient descent algorithm.

• An n-dimensional vector s for partial sums of edge weights.

• An n-dimensional vector b for the input demands.

• Scalars α, β, ε, m and n.

We now describe how to implement Algorithm 1 in the multipass streaming model.

1. Compute and store n, m, b, λ in a single pass with O(1) temporary space.

2. Construct and store an α-spanner G′ of G− = (V,E,w−) of size O(n logn) with α =
2dlogne − 1 in O(logn) passes with O(n logn) temporary space using the algorithm of
Corollary A.2.

3. Internally, compute and store an α-approximate solution π to the min-cost transshipment
problem with demands b using (B) with q := b with O(n logn) temporary space.

4. Compute and store Φβ(π) using (A) in a single pass with O(n) temporary space.

26

5. Internally, check if 4 ln(4m)
εβ ≥ Φβ(π). If not, scale up β by 5/4 and proceed with Step 3.

6. Compute and store ∇Φβ(π) using (A) in a single pass with O(n) temporary space.

7. Internally, compute and store b̃ := P T∇Φβ(π) = ∇Φβ(π) − b(πT∇Φβ(π)) (where P =
I − πbT) using O(n) temporary space.

8. Internally, compute and store h̃ such that ‖W−1
− AT h̃‖∞ = 1 and b̃T h̃ ≥ 1

α max{b̃Th :
‖W−1
− ATh‖∞ ≤ 1} using (B) with q := b̃ with O(n logn) temporary space.

9. Internally, compute and store r := Ph̃ = h̃ − π(bT h̃) (where P = I − πbT) using O(n)
temporary space.

10. Compute ‖R∗ATPh̃‖∞ = ‖R∗AT r‖∞ in a single pass with O(1) temporary space. (Keep
a temporary variable for computing the maximum, initialized to −∞. Every time an
edge is read, determine its forward arc (u, v) and its backward arc (v, u), and compute
(R∗AT r)(u,v) and (R∗AT r)(v,u), respectively, from the stored π. Then store the larger of
these two values if it exceeds the temporary maximum.).

11. Internally, compute δ := b̃T h̃
‖R∗ATP h̃‖∞

and check if δ ≥ ε
8αλ2 with O(1) temporary space.

If yes, internally compute π := π − δ
2β‖R∗ATP h̃‖∞

Ph̃ = π − δ
2β‖R∗AT r‖∞ r with O(n)

temporary space and proceed with the next iteration at Step 4.

12. At termination, compute f(π) := π
q(R∗AT π) as the output in a single pass with O(1)

temporary space. (Keep a temporary variable for computing the maximum, initialized
to 0. Every time an edge is read, determine its forward arc (u, v) and its backward
arc (v, u), and compute (R∗ATπ)(u,v) and (R∗ATπ)(v,u), respectively, from the stored π.
Then store the larger of these two values if it exceeds the temporary maximum.)

Using the algorithmic primitives (A) and (B), it is clear that we never exceed the promised
space bound of O(n logn). Apart from repetitions of Step 4 for scaling up β we need a constant
number of passes per step in the algorithm above. As there are ε−3 polylogn iterations by
Lemma 2.4 and we scale up β at most O(logn) times over the course of the algorithm, we
use ε−3 polylogn passes as promised in Theorem 2.11. It remains to show how to perform
primitives (A) and (B).

Primitive (A). We use the notation introduced in the description of Primitive (A) in
Section 4.1. We again exploit that

Φβ(π) = ln s

β

and, for every node v,
∇Φβ(π)v = bv

s
.

27

To implement the computation of Φβ(π) and ∇Φβ(π) in a single pass with O(n) temporary
space, it is sufficient to compute s, and, for every node v, bv in a single pass. For this purpose
we keep a variable for each of these values that is initialized to 0 before the pass. Every time
we read an edge with forward and backward weights from the stream, we first determine its
forward arc (u, v) and its backward arc (v, u). We then compute s+

π (u, v) and s−π (v, u) and
add eβs

+
π (u,v) + eβs

−
π (v,u) to the variable for s, eβs

+
π (u,v)

w+(u,v) −
eβs
−
π (v,u)

w−(v,u) to the variable for bv, and
eβs
−
π (v,u)

w−(v,u) −
eβs

+
π (u,v)

w+(u,v) to the variable for bu. After the pass is finished, the variables have the
desired value and we can internally compute Φβ(π) and ∇Φβ(π) with O(n) temporary space.

Primitive (B). We use the fact that we have stored an α-spanner G′ of G− = (V,E,w−). We
internally construct the node-arc incidence matrix A′ and the diagonal weight matrix W ′ of G′
and compute an optimal solution h′ to the linear program max{qTh : ||(W ′)−1(A′)Th||∞ = 1}.
We can compute a shortest transshipment using O(n logn) temporary space by enumerating
all feasible solutions and checking for optimality.14 By Lemma 4.1, h̃ := h′/α has the desired
properties.

Implementing Algorithm single_source_shortest_path After computing an α-spanner,
we can implement Algorithm single_source_shortest_path using primitives (A) and (B) in
a straightforward way. The algorithm internally uses our implementation of gradient_ust
with an increased precision of ε′ = ε3/(640α2 ln (2m)). We thus arrive at the following theorem.

Theorem 2.12. For any 0 < ε ≤ 1, in the multipass streaming model, deterministic (1 + ε)-
approximation to single-source shortest paths in undirected graphs with non-negative weights
can be computed in ε−9 polylogn passes with O(n logn) space.

5 Further Related Work
In the following we review further results on (approximate) SSSP in the non-centralized models
considered in this paper.

In the congest model of distributed computing, SSSP on unweighted graphs can be computed
exactly in O(D) rounds by distributed breadth-first search [Pel00]. For weighted graphs, the
only non-trivial algorithm known is the distributed version of Bellman-Ford [Bel58, For56]
using O(n) rounds. In terms of approximation, Elkin [Elk06] showed that computing an
α-approximate SSSP tree requires Ω((n/α)1/2/ logn+D) rounds. Together with many other
lower bounds, this was strengthened in [DHK+12] by showing that computing a (polyn)-
approximation of the distance between two fixed nodes in a weighted undirected graph requires
Ω(
√
n/ logn+D) rounds. The lower bounds were complemented by two SSSP algorithms: a

randomized O(α logα)-approximation using Õ(n1/2+1/α+D) rounds [LPS13] and a randomized
(1 + o(1))-approximation using Õ(n1/2D1/4 +D) rounds [Nan14]. Both results were improved
upon in [HKN16] by a deterministic algorithm that computes (1 + o(1))-approximate SSSP

14Alternatively, we could run one of the classic linear-space algorithms for the shortest transshipment problem.

28

in n1/2+o(1) + D1+o(1) rounds. A recent hop set construction of Elkin and Neiman [EN16]
improves the running time for computing shortest paths from multiple sources.

The congested clique model [LPP+05] has seen increasing interest in the past years as
it highlights the aspect of limited bandwidth in distributed computing, yet excludes the
possibility of explicit bottlenecks (e.g., a bridge that would limit the flow of information
between the parts of the graph it connects to O(logn) bits per round in the congest model). For
weighted graphs, SSSP can again be computed exactly in O(n) rounds. The first approximation
was given by Nanongkai [Nan14] with a randomized algorithm for computing (1 + o(1))-
approximate SSSP in Õ(

√
n) rounds. All-pair shortest paths on the congested Clique can

be computed deterministically in Õ(n1/3) rounds for an exact result and in O(n0.158) rounds
for a (1 + o(1))-approximation [CKK+15]. The time for computing all-pairs shortest paths
exactly has subsequently been improved to O(n0.2096) rounds [LG16]. The hop set construction
of [HKN16] gives a deterministic algorithm for computing (1 + o(1))-approximate SSSP in
no(1) rounds. A recent hop set construction of Elkin and Neiman [EN16] improves the running
time for computing shortest paths from multiple sources. We note that both, the approaches
of [HKN16] and [EN16], and our approach can actually operate in the more restricted broadcast
congested clique and broadcast congest models, in which in each round, each node sends the
same O(logn) bits to all other nodes or all its neighbors, respectively.

In the streaming model, two approaches were known for (approximate) SSSP before the
algorithm of [HKN16]. First, shortest paths up to distance d can be computed using d passes
and O(n) space in unweighted graphs by breadth-first search. Second, approximate shortest
paths can be computed by first obtaining a sparse spanner and then computing distances on
the spanner without additional passes [FKM+05, EZ06, FKM+08, Bas08, Elk11]. This leads,
for example, to a randomized (2k − 1)-approximate all-pairs shortest paths algorithm using
1 pass and Õ(n1+1/k) space for any integer k ≥ 2 in unweighted undirected graphs, which
can be extended to a (1 + ε)(2k − 1)-approximation in weighted undirected graphs for any
ε > 0 at the cost of increasing the space by a factor of O(ε−1 logR). In unweighted undirected
graphs, the spanner construction of [EZ06] can be used to compute (1 + o(1))-approximate
SSSP using O(1) passes and O(n1+o(1)) space. The hop set construction of [HKN16] gives a
deterministic algorithm for computing (1 + o(1))-approximate SSSP in weighted undirected
graphs using no(1) logR passes and n1+o(1) logR space. Using randomization, this was improved
to no(1) passes and O(n log2 n) space by Elkin and Neiman [EN16]. These upper bounds are
complemented by a lower bound of n1+Ω(1/p)/(poly p) space for all algorithms that decide in p
passes if the distance between two fixed nodes in an unweighted undirected graph is at most
2(p+ 1) for any p = O(logn/ log logn) [GO13]. Note that this lower bound in particular applies
to all algorithms that provide a 1 + ε approximation for ε < 1/2(p + 1) in integer weighted
graphs, as this level of precision requires to compute shortest paths for small enough distances
exactly.

29

References
[Bas08] Surender Baswana. “Streaming algorithm for graph spanners - single pass and

constant processing time per edge”. In: Information Processing Letters 106.3
(2008), pp. 110–114 (cit. on pp. 29, 35).

[Bel58] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathematics
16.1 (1958), pp. 87–90 (cit. on pp. 6, 28).

[Ber09] Aaron Bernstein. “Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest
Paths with Fast Query and Close to Linear Update Time”. In: Symposium on
Foundations of Computer Science (FOCS). 2009, pp. 693–702 (cit. on p. 3).

[BS07] Surender Baswana and Sandeep Sen. “A Simple and Linear Time Randomized
Algorithm for Computing Sparse Spanners in Weighted Graphs”. In: Random
Structures & Algorithms 30.4 (2007). Announced at ICALP’03, pp. 532–563 (cit. on
pp. 34, 35).

[CKK+15] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami
Paz, and Jukka Suomela. “Algebraic Methods in the Congested Clique”. In:
Symposium on Principles of Distributed Computing (PODC). 2015, pp. 143–152
(cit. on p. 29).

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel A. Spielman, and
Shang-Hua Teng. “Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs”. In: Symposium on Theory of Computing
(STOC). 2011, pp. 273–282 (cit. on p. 3).

[CMS+17] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu.
“Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in
Õ(m10/7 logW) Time”. In: Symposium on Discrete Algorithms (SODA). 2017
(cit. on p. 3).

[Coh00] Edith Cohen. “Polylog-Time and Near-Linear Work Approximation Scheme for
Undirected Shortest Paths”. In: Journal of the ACM 47.1 (2000). Announced at
STOC’94, pp. 132–166 (cit. on pp. 3, 5).

[DHK+12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. “Distributed Ver-
ification and Hardness of Distributed Approximation”. In: SIAM Journal on
Computing 41.5 (2012). Announced at STOC’11, pp. 1235–1265 (cit. on pp. 3, 4,
12, 24, 28).

[DS08] Samuel I. Daitch and Daniel A. Spielman. “Faster approximate lossy generalized
flow via interior point algorithms”. In: Symposium on Theory of Computing
(STOC). 2008, pp. 451–460 (cit. on p. 3).

[EK72] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems”. In: Journal of the ACM 19.2 (1972),
pp. 248–264 (cit. on p. 6).

30

http://dx.doi.org/10.1016/j.ipl.2007.11.001
http://dx.doi.org/10.1016/j.ipl.2007.11.001
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1002/rsa.20130
http://dx.doi.org/10.1002/rsa.20130
http://dx.doi.org/10.1145/2767386.2767414
http://dx.doi.org/10.1145/1993636.1993674
http://dx.doi.org/10.1145/1993636.1993674
https://arxiv.org/abs/1605.01717
https://arxiv.org/abs/1605.01717
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1145/1374376.1374441
http://dx.doi.org/10.1145/1374376.1374441
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1145/321694.321699

[Elk06] Michael Elkin. “An Unconditional Lower Bound on the Time-Approximation Trade-
off for the Distributed Minimum Spanning Tree Problem”. In: SIAM Journal on
Computing 36.2 (2006). Announced at STOC’04, pp. 433–456 (cit. on p. 28).

[Elk11] Michael Elkin. “Streaming and Fully Dynamic Centralized Algorithms for Con-
structing and Maintaining Sparse Spanners”. In: ACM Transactions on Algorithms
7.2 (2011). Announced at ICALP’07, 20:1–20:17 (cit. on p. 29).

[EN16] Michael Elkin and Ofer Neiman. “Hopsets with Constant Hopbound, and Ap-
plications to Approximate Shortest Paths”. In: Symposium on Foundations of
Computer Science (FOCS). 2016 (cit. on pp. 3, 5, 29).

[EZ06] Michael Elkin and Jian Zhang. “Efficient algorithms for constructing (1 + ε, β)-
spanners in the distributed and streaming models”. In: Distributed Computing
18.5 (2006), pp. 375–385 (cit. on p. 29).

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. “On graph problems in a semi-streaming model”. In: Theoretical Computer
Science 348.2-3 (2005). Announced at ICALP’04, pp. 207–216 (cit. on p. 29).

[FKM+08] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. “Graph Distances in the Data-Stream Model”. In: SIAM Journal on
Computing 38.5 (2008). Announced at SODA’05, pp. 1709–1727 (cit. on p. 29).

[For56] Lester R. Ford. Network Flow Theory. Tech. rep. P-923. The Rand Corporation,
1956 (cit. on pp. 6, 28).

[FT87] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci heaps and their uses in
improved network optimization algorithms”. In: Journal of the ACM 34.3 (1987).
Announced at FOCS’84, pp. 596–615 (cit. on p. 3).

[GO13] Venkatesan Guruswami and Krzysztof Onak. “Superlinear Lower Bounds for
Multipass Graph Processing”. In: Conference on Computational Complexity (CCC).
2013, pp. 287–298 (cit. on pp. 5, 29).

[Gol95] Andrew V. Goldberg. “Scaling Algorithms for the Shortest Paths Problem”. In:
SIAM Journal on Computing 24.3 (1995). Announced at SODA’93, pp. 494–504
(cit. on p. 6).

[HKN14] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decremental
Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update
Time”. In: Symposium on Foundations of Computer Science (FOCS). 2014, pp. 146–
155 (cit. on p. 3).

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A determin-
istic almost-tight distributed algorithm for approximating single-source shortest
paths”. In: Symposium on Theory of Computing (STOC). 2016, pp. 489–498
(cit. on pp. 3, 4, 25, 28, 29).

31

http://dx.doi.org/10.1137/S0097539704441058
http://dx.doi.org/10.1137/S0097539704441058
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/1921659.1921666
http://arxiv.org/abs/1605.04538
http://arxiv.org/abs/1605.04538
http://dx.doi.org/10.1007/s00446-005-0147-2
http://dx.doi.org/10.1007/s00446-005-0147-2
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1137/070683155
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1109/CCC.2013.37
http://dx.doi.org/10.1109/CCC.2013.37
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638

[HKT+15] Thomas Dueholm Hansen, Haim Kaplan, Robert Endre Tarjan, and Uri Zwick.
“Hollow Heaps”. In: International Colloquium on Automata, Languages and Pro-
gramming (ICALP). 2015, pp. 689–700 (cit. on p. 3).

[KLO+14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. “An
Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs,
and its Multicommodity Generalizations”. In: Symposium on Discrete Algorithms
(SODA). 2014, pp. 217–226 (cit. on p. 3).

[KR90] Richard M. Karp and Vijaya Ramachandran. “Parallel Algorithms for Shared-
Memory Machines”. In: Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity. The MIT Press, 1990, pp. 869–942 (cit. on p. 3).

[KV00] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer, 2000
(cit. on p. 5).

[LG16] François Le Gall. “Further Algebraic Algorithms in the Congested Clique Model
and Applications to Graph-Theoretic Problems”. In: International Symposium on
Distributed Computing (DISC). 2016, pp. 57–70 (cit. on p. 29).

[LPP+05] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. “Minimum-Weight
Spanning Tree Construction in O(log logn) Communication Rounds”. In: SIAM
Journal on Computing 35.1 (2005). Announced at SPAA’03, pp. 120–131 (cit. on
p. 29).

[LPS13] Christoph Lenzen and Boaz Patt-Shamir. “Fast Routing Table Construction Using
Small Messages”. In: Symposium on Theory of Computing (STOC). 2013, pp. 381–
390 (cit. on p. 28).

[LS14] Yin Tat Lee and Aaron Sidford. “Path Finding Methods for Linear Programming:
Solving Linear Programs in Õ(√rank) Iterations and Faster Algorithms for Maxi-
mum Flow”. In: Symposium on Foundations of Computer Science (FOCS). 2014,
pp. 424–433 (cit. on pp. 3, 6).

[Mąd13] Aleksander Mądry. “Navigating Central Path with Electrical Flows: From Flows
to Matchings, and Back”. In: Symposium on Foundations of Computer Science
(FOCS). 2013, pp. 253–262 (cit. on p. 3).

[MPV+15] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. “Improved
Parallel Algorithms for Spanners and Hopsets”. In: Symposium on Parallelism in
Algorithms and Architectures (SPAA). 2015, pp. 192–201 (cit. on p. 3).

[Nan14] Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted Short-
est Paths”. In: Symposium on Theory of Computing (STOC). 2014, pp. 565–573
(cit. on pp. 3, 28, 29).

[Orl93] James B. Orlin. “A Faster Strongly Polynomial Minimum Cost Flow Algorithm”.
In: Operations Research 41.2 (1993). Announced at STOC’88, pp. 338–350 (cit. on
p. 6).

32

http://dx.doi.org/10.1007/978-3-662-47672-7_56
http://dx.doi.org/10.1137/1.9781611973402.16
http://dx.doi.org/10.1137/1.9781611973402.16
http://dx.doi.org/10.1137/1.9781611973402.16
http://dx.doi.org/10.1007/978-3-662-53426-7_5
http://dx.doi.org/10.1007/978-3-662-53426-7_5
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2013.35
http://dx.doi.org/10.1109/FOCS.2013.35
http://dx.doi.org/10.1145/2755573.2755574
http://dx.doi.org/10.1145/2755573.2755574
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1287/opre.41.2.338

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Philadelphia,
PA: SIAM, 2000 (cit. on pp. 24, 28).

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions of
Approximate Distance Oracles and Spanners”. In: International Colloquium on
Automata, Languages and Programming (ICALP). 2005, pp. 261–272 (cit. on pp. 5,
35).

[Sch03] Alexander Schrijver. Combinatorial Optimization. Springer, 2003 (cit. on p. 5).
[She13] Jonah Sherman. “Nearly Maximum Flows in Nearly Linear Time”. In: Symposium

on Foundations of Computer Science (FOCS). 2013, pp. 263–269 (cit. on pp. 3,
15).

[She17] Jonah Sherman. “Generalized Preconditioning and Network Flow Problems”. In:
Symposium on Discrete Algorithms (SODA). 2017 (cit. on pp. 5, 6).

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer
Weights in Linear Time”. In: Journal of the ACM 46.3 (1999). Announced at
FOCS’97, pp. 362–394 (cit. on p. 3).

33

http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1109/FOCS.2013.36
http://arxiv.org/abs/1606.07425
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548

A Deterministic Spanner Computation in Congested Clique
and Multipass Streaming Model

For k ∈ Z>0, a simple and elegant randomized algorithm computing a (2k − 1)-spanner with
O(kn1+1/k) edges in expectation was given by Baswana and Sen [BS07]. For the sake of
completeness, we restate it here.

1. Initially, each node is a singleton cluster : R1 := {{v} | v ∈ V }.

2. For i = 1, . . . , k − 1 do:

(a) Each cluster from Ri is marked independently with probability n−1/k. Ri+1 is
defined to be the set of clusters marked in phase i.

(b) If v is a node in an unmarked cluster:
i. Define Qv to be the set of edges that consists of the lightest edge from v to each

cluster in Ri it is adjacent to.
ii. If v is not adjacent to any marked cluster, all edges in Qv are added to the

spanner.
iii. Otherwise, let u be the closest neighbor of v in a marked cluster. In this

case, v adds to the spanner the edge {v, u} and all edges {v, w} ∈ Qv with
w(v, w) < w(v, u) (break ties by neighbor identifiers). Also, let X be the cluster
of u. Then X := X ∪ {v}, i.e., v joins the cluster of u.

3. Each v ∈ V adds, for each X ∈ Rk it is adjacent to, the lightest edge connecting it to X
to the spanner.

It is easy to see that the algorithm selects O(kn1+1/k) expected edges into the spanner: In
each iteration, each node v sorts its incident clusters in order of ascending weight of the lightest
edge to them and elects for each cluster, up to the first sampled one, the respective lightest edge
into the spanner. Because this order is independent of the randomness used in this iteration, v
selects O(n1/k) edges in expectation and O(n1/k logn) edges with high probability.15 The same
bound applies to the final step, as |Rk| ∈ O(n1/k) in expectation and |Rk| ∈ O(n1/k logn) with
high probability. Moreover, this observation provides a straightforward derandomization of the
algorithm applicable in our model: Instead of picking Ri+1 in iteration i randomly, we consider
the union Ei over all nodes v of the lightest O(n1/k logn) edges in Qv. By a union bound, with
high probability we can select Ri+1 such that (i) |Ri+1| ≤ n−1/k|Ri| and (ii) each node selects
only O(n1/k logn) edges into the spanner in this iteration. In particular, such a choice must
exist, and it can be computed from Ri and Ei alone. With this argument we deterministically
obtain a spanner of size O(kn1+1/k logn).

15That is, for any fixed constant choice of c > 0, the number of selected edges is bounded by O(n1/k log n)
with probability at least 1− 1/nc.

34

1. Initially, each node is a singleton cluster : R1 := {{v} | v ∈ V }.

2. For i = 1, . . . , k − 1 do for each node v:

(a) Define Qv to be the set of edges that consists of the lightest edge from v to each
cluster in Ri it is adjacent to.

(b) Broadcast the set Q′v of the lightest O(n1/k logn) edges in Qv.
(c) For w ∈ V , denote by Xw ∈ Ri the cluster so that v ∈ Xw. Locally compute

Ri+1 ⊆ Ri such that (i) |Ri+1| ≤ n−1/k|Ri| and (ii) for each w ∈ V for which
Q′v 6= Qv, it holds that Xw ∈ Ri+1 or Q′v contains an edge connecting to some
X ∈ Ri+1.

(d) Update clusters and add edges to the spanner as the original algorithm would, but
for the computed choice of Ri+1.

3. Each v ∈ V adds, for each X ∈ Rk it is adjacent to, the lightest edge connecting it to X.

A slightly stronger bound of O(kn1+1/k) on the size of the spanner, matching the expected
value from above up to constant factors, can be obtained in this framework by using the
technique of deterministically finding early hitting sets developed by Roditty, Thorup, and
Zwick [RTZ05].

Note that, as argued above, the selection of Ri+1 in Step 2(c) is always possible and can be
done deterministically, provided that Ri is known. Because R1 is simply the set of singletons
and each node computes Ri+1 from Ri and the Q′v, this holds by induction. We arrive at the
following result.

Corollary A.1 (of [BS07] and [RTZ05]). For k ∈ Z>0, in the broadcast congested clique a
(2k − 1)-spanner of size O(kn1+1/k) can be deterministically computed and made known to all
nodes in O(kn1/k logn) rounds.

Proof. The bound of α = 2k− 1 follows from the analysis in [BS07], which does not depend on
the choice of the Ri. For the round complexity, observe that all computations can be performed
locally based on knowing Q′v for all nodes v ∈ V in each iteration. As |Q′v| ∈ O(n1/k logn) for
each iteration and each v, the claim follows.

By similar arguments, we can also get an algorithm in the multipass streaming algorithm
with comparable guarantees. We remark that, apart from the property of being deterministic,
this was already stated in [Bas08] as a simple consequence of [BS07].

Corollary A.2 (of [BS07] and [RTZ05]). For k ∈ Z>0, in the multipass streaming model
a (2k − 1)-spanner of size O(kn1+1/k) can be deterministically computed in k passes using
O((k + logn)n1+1/k) space.

35

B Primal-Dual Pair
Lemma B.1. The dual of min{p(W∗x) : Ax = b} is max{bT y : q(R∗AT y) ≤ 1}. Moreover,
strong duality holds.

Proof. Observe that the minimization problem is in fact a linear program, since it can be
rewritten as

min{p(W∗x) : Ax = b} = min{w+Tx+ + w−
T
x− : Ax+ −Ax− = b, x+, x− ≥ 0}.

Thus, a dual exists for which strong duality holds. It is given by

max{bT y : AT y ≤ w+, −AT y ≤ w−} = max{bT y : q(R∗AT y) ≤ 1},

which proves the claim.

C Inequality (11)
Observe that, for any vector x ∈ Rm,

p(W∗RT∗∇ lse(R∗x)) =

∑m
i=1 max{exi/w

+
i − w+

i

w−i
e−xi/w

−
i ,−w−i

w+
i

exi/w
+
i + e−xi/w

−
i }∑m

i=1 e
xi/w

+
i + e−xi/w

−
i

,

which is a convex combination of terms of the form

max{exi/w
+
i − w+

i

w−i
e−xi/w

−
i ,−w−i

w+
i

exi/w
+
i + e−xi/w

−
i }

exi/w
+
i + e−xi/w

−
i

.

Basic calculus shows that these terms are bounded between 0 and 1. Thus, their convex
combination is at most 1 as well, which shows that Inequality (11) holds.

36

	1 Introduction
	2 High-level Description of Underlying Ideas
	2.1 Gradient Descent for Asymmetric Transshipment
	2.2 Implementation in Various Models of Computation

	3 Solving the Asymmetric Transshipment Problem
	3.1 Single-Source Shortest Paths
	3.2 Finding a Tree Solution

	4 Applications
	4.1 Broadcast Congested Clique
	4.2 Broadcast Congest Model
	4.3 Multipass Streaming

	5 Further Related Work
	References
	A Deterministic Spanner Computation in Congested Clique and Multipass Streaming Model
	B Primal-Dual Pair
	C Inequality (11)

