Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling

MPG-Autoren
/persons/resource/persons191339

Swameye,  I.
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191297

Sandra,  O.
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191156

Klingmueller,  U.
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Swameye, I., Mueller, T. G., Timmer, J., Sandra, O., & Klingmueller, U. (2003). Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1028-1033.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-9574-8
Zusammenfassung
Considerable progress has been made in identifying the molecular composition of complex signaling networks controlling cell proliferation, differentiation, and survival. However, to discover general building principles and predict the dynamic behavior of signaling networks, it is necessary to develop quantitative models based on experimental observations. Here we report a mathematical model of the core module of the Janus family of kinases (JAK)-signal transducer and activator of transcription (STAT) signaling pathway based on time-resolved measurements of receptor and STAT5 phosphorylation. Applying the fitted model, we can determine the quantitative behavior of STAT5 populations not accessible to experimental measurement. By in silico investigations, we identify the parameters of nuclear shuttling as the most sensitive to perturbations and verify experimentally the model prediction that inhibition of nuclear export results in a reduced transcriptional yield. The model reveals that STAT5 undergoes rapid nucleocytoplasmic cycles, continuously coupling receptor activation and target gene transcription, thereby forming a remote sensor between nucleus and receptor. Thus, dynamic modeling of signaling pathways can promote functional understanding at the systems level.