English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity

MPS-Authors
/persons/resource/persons191183

Laue,  Kathrin
Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191016

Daujat,  Sylvain
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191368

Walderich,  B.
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons15783

Schneider,  Robert
Spemann Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191086

Hammerschmidt,  Matthias
Georges Köhler Laboratory, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Laue, K., Daujat, S., Crump Gage, J., Plaster, N., Roehl, H. H., van Bebber, F., et al. (2008). The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development, 135, 1935-1946.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-90F1-9
Abstract
The Trithorax group (TrxG) is composed of diverse, evolutionary conserved proteins that form chromatin-associated complexes accounting for epigenetic transcriptional memory. However, the molecular mechanisms by which particular loci are marked for reactivation after mitosis are only partially understood. Here, based on genetic analyses in zebrafish, we identify the multidomain protein Brpf1 as a novel TrxG member with a central role during development. brpf1 mutants display anterior transformations of pharyngeal arches due to progressive loss of anterior Hox gene expression. Brpf1 functions in association with the histone acetyltransferase Moz (Myst3), an interaction mediated by the N-terminal domain of Brpf1, and promotes histone acetylation in vivo. Brpf1 recruits Moz to distinct sites of active chromatin and remains at chromosomes during mitosis, mediated by direct histone binding of its bromodomain, which has a preference for acetylated histones, and its PWWP domain, which binds histones independently of their acetylation status. This is the first demonstration of histone binding for PWWP domains. Mutant analyses further show that the PWWP domain is absolutely essential for Brpf1 function in vivo. We conclude that Brpf1, coordinated by its particular set of domains, acts by multiple mechanisms to mediate Moz-dependent histone acetylation and to mark Hox genes for maintained expression throughout vertebrate development.