English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging

MPS-Authors
/persons/resource/persons191203

Lugert,  Sebastian
Emeritus Group: Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons190977

Basak,  Onur
Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191161

Knuckles,  Philip
Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191343

Taylor,  Verdon
Emeritus Group: Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191071

Giachino,  Claudio
Department of Molecular Embryology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lugert, S., Basak, O., Knuckles, P., Haussler, U., Fabel, K., Götz, M., et al. (2010). Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell, 6, 445-456.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-8E91-1
Abstract
New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2+ NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.