Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hydration Dynamics of a Peripheral Membrane Protein

MPG-Autoren
/persons/resource/persons199124

Päslack,  Christopher
Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University;
Research Group Heyden, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132929

Heyden,  Matthias
Research Group Heyden, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

ja6b07005_si_001.pdf
(Ergänzendes Material), 743KB

Zitation

Fisette, O., Päslack, C., Barnes, R., Isas, J. M., Langen, R., Heyden, M., et al. (2016). Hydration Dynamics of a Peripheral Membrane Protein. Journal of the American Chemical Society, 138(36), 11526-11535. doi:10.1021/jacs.6b07005.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-787A-4
Zusammenfassung
Water dynamics in the hydration shell of the peripheral membrane protein annexin B12 were studied using MD simulations and Overhauser DNP-enhanced NMR. We show that retardation of water motions near phospholipid bilayers is extended by the presence of a membrane-bound protein, up to around 10 Å above that protein. Near the membrane surface, electrostatic interactions with the lipid head groups strongly slow down water dynamics, whereas protein-induced water retardation is weaker and dominates only at distances beyond 10 Å from the membrane surface. The results can be understood from a simple model based on additive contributions from the membrane and the protein to the activation free energy barriers of water diffusion next to the biomolecular surfaces. Furthermore, analysis of the intermolecular vibrations of the water network reveals that retarded water motions near the membrane shift the vibrational modes to higher frequencies, which we used to identify an entropy gradient from the membrane surface toward the bulk water. Our results have implications for processes that take place at lipid membrane surfaces, including molecular recognition, binding, and protein–protein interactions.