日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Can Gravitational Instantons Really Constrain Axion Inflation?

MPS-Authors
/persons/resource/persons20718

Theisen,  Stefan
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1607.06814.pdf
(プレプリント), 1011KB

JHEP02(2017)097.pdf
(出版社版), 833KB

付随資料 (公開)
There is no public supplementary material available
引用

Hebecker, A., Mangat, P., Theisen, S., & Witkowski, L. T. (2017). Can Gravitational Instantons Really Constrain Axion Inflation? Journal of high energy physics: JHEP, 2017(02):. doi:10.1007/JHEP02(2017)097.


引用: https://hdl.handle.net/11858/00-001M-0000-002B-5FAB-B
要旨
Axions play a central role in inflationary model building and other cosmological applications. This is mainly due to their flat potential, which is protected by a global shift symmetry. However, quantum gravity is known to break global symmetries, the crucial effect in the present context being gravitational instantons or Giddings-Strominger wormholes. We attempt to quantify, as model-independently as possible, how large a scalar potential is induced by this general quantum gravity effect. We pay particular attention to the crucial issue which solutions can or cannot be trusted in the presence of a moduli-stabilisation and a Kaluza-Klein scale. An important conclusion is that, due to specific numerical prefactors, the effect is surprisingly small even in UV-completions with the highest possible scale offered by string theory. As we go along, we discuss in detail Euclidean wormholes, cored and extremal instantons, and how the latter arise from 5d Reissner-Nordstrom black holes. We attempt to dispel possible doubts that wormholes contribute to the scalar potential by an explicit calculation. We analyse the role of stabilised dilaton-like moduli. Finally, we argue that Euclidean wormholes may be the objects satisfying the Weak Gravity Conjecture extended to instantons.