English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis

MPS-Authors
/persons/resource/persons188349

Werlé,  Christophe
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58578

Goddard,  Richard
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58886

Philipps,  Petra
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58537

Farès,  Christophe
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

[348]SI.zip
(Supplementary material), 33MB

Citation

Werlé, C., Goddard, R., Philipps, P., Farès, C., & Fürstner, A. (2016). Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis. Journal of the American Chemical Society, 138(11), 3797-3805. doi:10.1021/jacs.5b13321.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-60E6-F
Abstract
Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology.