Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavy-fermion superconductor CeCu2Si2

MPG-Autoren
/persons/resource/persons126843

Seiro,  Silvia
Silvia Seiro, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126614

Geibel,  Christoph
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126861

Steglich,  Frank
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kittaka, S., Aoki, Y., Shimura, Y., Sakakibara, T., Seiro, S., Geibel, C., et al. (2016). Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavy-fermion superconductor CeCu2Si2. Physical Review B, 94(5): 054514, pp. 1-9. doi:10.1103/PhysRevB.94.054514.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-4DE9-1
Zusammenfassung
This paper presents the results of specific-heat and magnetization measurements, in particular their field-orientation dependence, on the first discovered heavy-fermion superconductor CeCu2Si2 (T-c similar to 0.6K). We discuss the superconducting gap structure and the origin of the anomalous pair-breaking phenomena, leading, e.g., to the suppression of the upper critical field H-c2, found in the high-field region. The data show that the anomalous pair breaking becomes prominent below about 0.15 K in any field direction, but occurs closer to H-c2 for H parallel to c. The presence of this anomaly is confirmed by the fact that the specific-heat and magnetization data satisfy standard thermodynamic relations. Concerning the gap structure, field-angle dependencies of the low-temperature specific heat within the ab and ac planes do not show any evidence for gap nodes. From microscopic calculations in the framework of a two-band full-gap model, the power-law-like temperature dependencies of C and 1/T-1, reminiscent of nodal superconductivity, have been reproduced reasonably. These facts further support multiband full-gap superconductivity in CeCu2Si2.