English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neural networks for harmonic structure in music perception and action

MPS-Authors
/persons/resource/persons86913

Bianco,  Roberta
Otto Hahn Group Neural Bases of Intonation in Speech, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons73242

Kim,  Seung-Goo
Methods and Development Unit - MEG and Cortical Networks, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Scharf,  Florian
Otto Hahn Group Neural Bases of Intonation in Speech, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19643

Friederici,  Angela D.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19958

Sammler,  Daniela
Otto Hahn Group Neural Bases of Intonation in Speech, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bianco, R., Novembre, G., Keller, P. E., Kim, S.-G., Scharf, F., Friederici, A. D., et al. (2016). Neural networks for harmonic structure in music perception and action. NeuroImage, 142, 454-464. doi:10.1016/j.neuroimage.2016.08.025.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-2E2A-4
Abstract
The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in musical actions and how they relate to auditory perception. To fill this gap, expert pianists were presented with harmonically congruent or incongruent chord progressions, either as musical actions (photos of a hand playing chords) that they were required to watch and imitate without sound, or in an auditory format that they listened to without playing. By combining task-based functional magnetic resonance imaging (fMRI) with functional connectivity at rest, we identified distinct sub-regions in right inferior frontal gyrus (rIFG) interconnected with parietal and temporal areas for processing action and audio sequences, respectively. We argue that the differential contribution of parietal and temporal areas is tied to motoric and auditory long-term representations of harmonic regularities that dynamically interact with computations in rIFG. Parsing of the structural dependencies in rIFG is co-determined by both stimulus- or task-demands. In line with contemporary models of prefrontal cortex organization and dual stream models of visual-spatial and auditory processing, we show that the processing of musical harmony is a network capacity with dissociated dorsal and ventral motor and auditory circuits, which both provide the infrastructure for predictive mechanisms optimising action and perception performance.