Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamic heterogeneities in supercooled water

MPG-Autoren
/persons/resource/persons173589

Mazza,  Marco G.
Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giovambattista, N., Mazza, M. G., Buldyrev, S. V., Starr, F. W., & Stanley, H. E. (2004). Dynamic heterogeneities in supercooled water. The Journal of Physical Chemistry B, 108(21), 6655-6662. doi:10.1021/jp037925w.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-2FB5-F
Zusammenfassung
We investigate dynamic heterogeneities in liquid water by performing molecular dynamics simulations of the SPC/E model. We find clusters of mobile molecules. We study the temperature and time dependence of the cluster size and find that clusters grow as temperature decreases and have a maximum size at the time scale corresponding to the escape of the molecules from the cage formed by neighboring molecules. We relate the average mass n* of mobile particle clusters to the diffusion constant, D, and the configurational entropy, Sconf. We find that n* can be interpreted as the mass of the “cooperatively rearranging regions” hypothesized in the Adam-Gibbs theory of the dynamics of supercooled liquids. In the context of the potential energy landscape (PEL) approach, the diffusion of molecules is related to the change of basins. By studying the dynamics of the system on the PEL, we identify clusters formed by the molecules with large displacements as the system visits consecutive local minima on the PEL. We relate the changing of basins with the restructuring of the hydrogen bond network.