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Evaluating nonlinear coregistration of BOLD EPI and T1 images

Abstract

In view of geometric distortions in EPI images, correction methods are required to enable 

accurate mapping to the brain anatomy. Nonlinear coregistration constitutes an interesting 

alternative in the absence of gold-standard correction approaches such as fieldmapping and 

reverse  phase  encoding.  Although  early  investigations  of  nonlinear  coregistration  have 

yielded  encouraging  results,  the  method  has  not  been  widely  adopted  for  neuroimaging 

analysis due to the lack of extensive evaluation and user-friendly implementation. Here, the 

usefulness  of  direct,  nonlinear  BOLD  EPI  and  T1w  image  coregistration  for  standard 

applications  is  explored.  A practicable  framework  is  provided through  the  integration  of 

required  preprocessing  steps  and  nonlinear  transformation  with  Advanced  Normalization 

Tools (ANTs) in a single Nipype workflow. Different versions of the pipeline were tested on 

a  large set  of real  imaging data  as  well  as on simulated  data.  In  a  direct  comparison to 

existing methods no satisfactory results  could be obtained for nonlinear coregistration.  In 

particular,  a  lack  of  robustness  across  datasets  challenges  the  viability  of  nonlinear 

coregistration  for distortion correction on a  larger  scale  and highlights  the importance  of 

extensive evaluation procedures. 
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Evaluating nonlinear coregistration of BOLD EPI and T1 images

Introduction

In functional magnetic resonance imaging (fMRI), coregistration of functional time series to 

a high resolution anatomical image is crucial for accurate localization  (Toga & Thompson 

2001; Brett  et al.  2002). Classical implementations of intrasubject,  intermodal registration 

rely  on  linear  transformation  algorithms,  assuming  that  geometric  proportions  remain 

constant across imaging modalities.  Unlike structural images, functional scans often suffer 

from distortions, rendering the supposition of geometric consistency partially invalid (Jezzard 

&  Clare  1999).  To  overcome  the  effect  of  distortion  bias  in  functional  images,  linear 

transformations need to be supplemented with appropriate methods for distortion correction 

(Hutton et al. 2002; Jezzard 2012). While existing correction techniques based on fieldmaps 

(Jezzard & Balaban 1995; Weisskoff & Davis 1992) and reverse phase encoding (Andersson 

et  al.  2003) achieve  good  results,  they  naturally  entail  certain  limitations.  Nonlinear 

transformation  algorithms  have  been  suggested  as  an  alternative  approach  for  distortion 

correction (Kybic et al. 2000; Studholme et al. 2000; Gholipour et al. 2008a). Yet, large-scale 

evaluation and application-friendly implementation of this method remain outstanding issues. 

Geometric distortions in EPI images

The majority of current fMRI studies rely on blood oxygen level dependent (BOLD) (Ogawa 

et  al.  1990) echo  planar  imaging  (EPI)  sequences  (Mansfield  1977).  These  provide  the 

temporal resolution required to track functional dynamics at the cost of high susceptibility to 

magnetic  field  inhomogeneities.  Inevitably,  the  presence  of  a  subject  in  the  scanner 

introduces  inhomogeneities  in  the static  magnetic  field (B0) as well  as the superimposed 

gradient fields, which cannot be completely overcome by shimming (Cusack et al. 2003). It is 

thus a well  recognized problem that  EPI images  suffer from geometric  distortions due to 

nonlinearity  of  spatial  encoding  gradients  (Jezzard  2012).  Driven  by  high  susceptibility 

differences,  distortions particularly affect brain regions near bones or air filled sinuses such 

as orbitofrontal cortex (OFC) and the temporal lobes. Because phase errors accumulate over 

time, distortions are substantially scaled up in the direction of phase encoding where the time 

between acquisition of adjacent voxels is greatest. Here, shifts can be augmented to the order 

of  several  voxels  (Jezzard & Balaban 1995).  The erroneous signal  displacement  severely 
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compromises coregistration to structural images and can eventually impair functional analysis 

in respective areas (Villain et al. 2010). 

Fieldmaps and reverse phase encoding

A popular approach to counteract distortion artefacts employs explicit, individual maps of B0 

inhomogeneities (Jezzard & Balaban 1995; Weisskoff & Davis 1992; Chen & Wyrwicz 1999; 

Reber et al. 1998). Those so called fieldmaps are derived based on the phase shift between 

two non-EPI scans with a slight echo time offset and then used to unwarp the distorted EPI 

image along the phase encoding direction. More recently it has been suggested that an EPI 

scan with a reverse phase encoding gradient and opposite distortions from the time series can 

be used to  derive an off-resonance field for  a  similar  correction  (Andersson et  al.  2003; 

Holland et al. 2010). However, some constraints of the aforementioned approaches persist. 

Both methods require additional scanning time and prospective planning, the latter precluding 

application  to  existing  data.  The  fidelity  of  correction  will  vary  with  the  quality  of  the 

additional scans as faithful reconstruction of fieldmaps from phase information depends on 

the noise level  of the images  (Hutton  et  al.  2002).  Moreover,  accuracy of  the correction 

cannot  necessarily  be  assumed  in  the  presence  of  strong  inhomogeneities  as  shown  for 

fieldmaps by Wu and colleagues (Wu et al. 2008).

Nonlinear coregistration

Alternatively,  the  deformation  required  for  distortion  correction  can  be  derived  directly 

through nonlinear coregistration of EPI and T1w images1 (Kybic et al. 2000; Studholme et al. 

2000;  Gholipour et  al.  2008a).  Nonlinear  algorithms  are  widely  used  for  intersubject, 

intramodal  registration problems but their  adaption for EPI and T1w coregistration poses 

serious  challenges.  Different  image  contrasts  between  modalities  require  additional 

preprocessing and restrict the choice of similarity metrics  (Bhushan et al. 2012). Moreover, 

limited structural information in EPI images makes it extremely difficult to establish faithful 

correspondence to the anatomy. It is therefore crucial to prevent unreasonable displacement 

1 While the focus here are distortions in BOLD EPI images, similar issues pertain to the use of EPI sequences in 
diffusion weighted imaging (DWI). Interestingly, the idea of nonlinear coregistration has been explored more  
extensively in DWI (Wu et al. 2008; Tao et al. 2009; Bhushan et al. 2012; Daga et al. 2013) . It remains unclear 
how the outcomes translate between imaging modalities.

3



Evaluating nonlinear coregistration of BOLD EPI and T1 images

by imposing constraints on the deformation field (Gholipour et al. 2007). Previous studies for 

instance informed their transformation model with physics-based constraints concerning the 

smoothness  of  the  deformation  field  (Studholme et  al.  2000) and restricted  deformations 

largely  to  phase  encoding  direction  (Gholipour et  al.  2008a).  While  the  results  of  those 

procedures  are  generally  encouraging,  they  have  not  made  it  to  common  practice  fMRI 

analysis.  Potential  reasons  include  the  lack  of  large-scale  evaluation  and  availability  in 

common neuroimaging software.  Moreover,  additional  scans are often required,  involving 

similar problems as field based methods. 

The present study addresses some of the issues potentially arresting the adoption of nonlinear 

coregistration beyond a specialized community. It explores the possibility of direct nonlinear 

coregistration between EPI and T1w images within a user-friendly pipeline,  exclusively 

employing common neuroimaging software.  Performance and robustness of the correction 

are evaluated based on a large real dataset as well as simulated data in comparison to 

established correction techniques.

Methods

Data acquisition

Neuroimaging data of 73 healthy participants (31.6 ± 16.3 years old, 36 female) from the 

Leipzig Cohort for Mind-Body-Emotion Interactions (LEMON) was included in the study. 

The subjects  gave  informed consent  and all  protocols  were approved by the  local  ethics 

committee at the University of Leipzig, Faculty of Medicine. Data was acquired on a 3 Tesla 

Siemens Verio Scanner using a 32 channel head coil. For each subject, a T1w anatomical 

image  was  acquired  using  a  magnetization  prepared  two  rapid  acquisition  gradient  echo 

sequence (MP2RAGE, TR = 5 s, TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, flip angle1  = 

4° , flip angle2 = 5°, voxel size = 1 × 1 × 1 mm, FOV = 256 mm, 176 slices). Further, a  

BOLD weighted resting state time series containing 657 contiguous volumes was collected 

with a gradient echo EPI sequence (TR = 1.4 s, TE = 30 ms, flip angle = 69°, multiband 

factor = 4, voxel size = 2.3 × 2.3 × 2.3 mm, FOV = 202 mm, 64 slices, phase encoding = 

anterior-posterior (AP)). A pair of gradient echo non-EPI scans (TR = 0.68 s, TE1 = 5.19 ms, 

TE2 = 7.65 ms, flip angle = 60°, voxel size = 2.3 × 2.3 × 2.3 mm, FOV = 202 mm, 64 slices) 

and two sets of spin echo EPI scans (TR = 2.2 s, TE = 50 ms, flip angle = 90°, multiband 

4



Evaluating nonlinear coregistration of BOLD EPI and T1 images

factor = 4, voxel size = 2.3 × 2.3 × 2.3 mm, FOV = 202 mm, 64 slices, phase encoding = AP,  

3  volumes  /  PA,  3  volumes)  were  acquired  for  fieldmap  and  reverse  phase  encoding 

correction, respectively.

Image processing

To ensure reproducibility and enable smooth interfacing of different neuroimaging software, 

all data processing was streamlined using Nipype2 (Gorgolewski et al. 2011). An overview of 

the processing pipeline is shown in Figure 1a. Brain extraction of T1w images was performed 

with MIPAV3 (McAuliffe et al. 2001)  in JIST environment4 (Lucas et al. 2010) employing 

CBS Tools MP2RAGE Background Masking  (Bazin et al. 2014) and the SPECTRE 2010 

algorithm  (Carass  et  al.  2011).  Subsequently,  cortical  reconstruction  and  volumetric 

segmentation  was  performed  with  Freesurfer  (Dale  et  al.  1999;  Fischl  et  al.  1999). 

Transformation into standard space (MNI152, voxel size = 1 × 1 × 1 mm) was derived using 

ANTs5 (Avants et al. 2011). Functional images were realigned to the first volume using FSL 

MCFLIRT (Jenkinson et al. 2002). A temporal average of the motion corrected time series 

was used for rigid coregistration to the subject's T1w image, carried out with a combination 

of FSL FLIRT (Jenkinson & Smith 2001) and Freesurfer bbregister (Greve & Fischl 2009). 

Distortion correction was either omitted  (uncorrected) or carried out employing one out of 

2 http://nipy.sourceforge.net/nipype/
3 http://mipav.cit.nih.gov/index.php
4 http://www.nitrc.org/projects/jist/
5 http://stnava.github.io/ANTs/
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three  different  methods  described  below  (fieldmap,  topup,  nonlinear).  Finally, 

transformations from distortion correction and coregistration were collapsed and applied to 

the temporal mean image in a single interpolation. Where necessary, the mean image was 

further projected into standard space using the transformation derived from the anatomical 

data before.

 B0 field based distortion correction (fieldmap). Correction based on explicit mapping of B0 

field  inhomogeneities  was carried  out  using  the  fsl_prepare_fieldmap  script  and FUGUE 

(Jenkinson et al. 2012). The phase image was scaled to radians per second, phase unwrapped 

and tightly masked. The resulting fieldmap was converted into a map of shift values in voxel 

space  (shiftmap)  and  unmasked  to  avoid  edge  effects.  The  mean  functional  image  was 

registered to the magnitude image and unwarped using the shiftmap before coregistration to 

the anatomy.

Reserve phase encoding based distortion correction (topup). FSL TOPUP (Smith et al. 2004) 

was used to derive the off-resonance field from sets of images with reverse phase encoding 

direction (Andersson et al. 2003). Processing and application of this field followed the same 

steps as described for the B0 fieldmap above.

Nonlinear  coregistration  to  anatomy  for  distortion  correction  (nonlinear).  Nonlinear 

coregistration of the mean functional and T1w images was carried out with ANTs applying 

the  symmetric  diffeomorphic  transformation  model  SyN  and  the  fast  cross-correlation 

similarity  metric  (Avants  et  al.  2008).  Extensive  testing  was  performed  to  find  optimal 

preprocessing  steps  and ANTs parameter  sets.  After  an  initial  exploratory  phase  a  basic 

procedure was fixed, which is depicted in Figures 1b and c and available online as a reusable 

Nipype workflow and command line tool6. In short, the intensities of the brain extracted T1w 

image were scaled and inverted to resemble the contrast of of the functional image. Careful 

masking of EPI and T1w image preceded nonlinear coregistration, which was initiated with 

the  rigid  transformation  derived  before.  Starting  from  this  essential  pipeline,  systematic 

variation of four core aspects,  namely masking, regularization,  iterations  and deformation 

restriction, ensued (see Tab. 1 for details). The second testing phase was accompanied by 

more formal evaluation as outlined in the Evaluation section below.

6 https://github.com/NeuroanatomyAndConnectivity/epi_t1_nonlinear
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Simulation

An undistorted EPI image was simulated using FSL POSSUM (Drobnjak et al. 2010). Tissue 

class images were derived from one arbitrarily selected subject of the LEMON cohort (cf. 

Data acquisition) using FSL FAST (Zhang et al. 2001) to serve as the segmented anatomical 

voxel model. Pulse sequence information was set to standard values (TR = 3 s, TE = 30 ms, 

flip angle = 90°, voxel size = 4 × 4 × 3.6 mm, slice gap = 0.4 mm, FOV = 256 mm, 40 slices)  

and thermal  noise  was  added  for  a  resultant  signal-to-noise  ratio  of  10.  The  image  was 

blurred with a 2 mm Gaussian kernel.  The subject’s real fieldmap was used to introduce 

different levels of distortion using FSL FUGUE with echo spacing incrementing from 0.1 to 

1 ms (Chambers et al. 2014; Bhushan et al. 2012) (Supplementary Fig. 3). Based on real data 

values, the images were clipped at an intensity of twice their robust maximum. Similar to the 

real data, the ten distorted images were registered to the subject’s T1w image and either no 

(uncorrected), fieldmap or nonlinear distortion correction was applied. 

Evaluation

Measures and images for evaluation were derived and plotted in an automated fashion using 

Nipype, nibabel7 and nilearn8.

7 http://nipy.org/nibabel/
8 http://nilearn.github.io/
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Visual inspection. Group averages of mean EPI images were created. To evaluate the fit to 

anatomical  structures,  edge  images  were  derived  from  the  subject’s  T1w  image  or  the 

MNI152 template,  respectively,  consisting  of  grey-white  matter  boundaries  and the  brain 

mask outline. Intensity difference maps between the subjects’ mean functional images after 

different forms of distortion correction were derived and combined into a group average map 

for each contrast. EPI masks were created from each subject’s mean functional image using 

FSL BET (Smith 2002) and used to derive minimal and average group masks and group mask 

standard deviation. Deformation fields from the different correction methods were converted 

to  a  common format  and scaled  for comparability.  As fieldmap and topup shiftmaps  are 

restricted to one (the phase encoding) dimension, only this dimension could be considered for 

evaluation

Quantitative  measures. Similarity  of  EPI  and  T1w  images  was  assessed  in  terms  of 

normalized mutual information (NMI) and correlation ratio (CR) within either a whole brain 

mask or orbitofrontal regions as defined by the Harvard-Oxford probabilistic atlas (>25%) 

(Supplementary Fig. 2). Voxelwise Spearman’s rank correlation was calculated between the 

deformation  fields  and between the  corrected  mean  functional  images  resulting  from the 

different  correction  methods.  Likewise,  for  the  simulated  data,  correlation  between  the 

original distortion field and the nonlinear deformation field as well as correlation between the 

undistorted image and the differentially corrected images was computed for each level of 

distortion. The span between the robust minimum and maximum shift values was computed 

for the deformation fields across subjects or levels of distortion respectively.

Results

Contrary to initial expectations, single parameter variations exhibited a complex patterning of 

negative  and  positive  consequences  throughout  optimization  of  nonlinear  coregistration. 

While an exhaustive account of the tested procedures is beyond the scope of this paper, the 

following  section  describes  a  comparative  evaluation  of  a  subselection  of  nonlinear 

coregistration  pipelines  along with the  established correction  methods.  The selection  was 

made to provide a comprehensive picture of the impact of core parameters (see Tab. 1). The 

results  of  all  possible  combinations  of  parameters  can  be  found  in  the  Supplementary 

Material.
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Overview nonlinear coregistration

Five sets of parameters are listed in Table 2, along with a broad outline of their outcomes. 

Improvements  and deteriorations  are  presented  in  comparison to  the uncorrected  case.  A 

more detailed discussion of the different aspects of evaluation in relation to fieldmap and 

topup  correction  is  provided  in  the  subsequent  sections.  V1  represents  the  set  of  core 

parameters that is closest  to standard values for SyN transformation in ANTs. This setup 

yields promising results in terms of the derived group mask and the deformation fields for 

simulated data. Unfortunately, the remaining measures show worse outcomes for this version 

than for  no correction;  large  shift  and CR values  indicate  overfitting.  To counteract  this 

effect, deformations are limited more strictly to phase encoding direction in v2. While the 

restriction causes the outcomes to be less extreme, the general evaluation pattern remains. For 

a yet more conservative transformation, iterations are drastically reduced in v3. Evaluation of 

this version arguably yields the best overall picture, although the deformation fields exhibit 

reduced continuity. Additional strict limitation of deformation direction gives virtually the 

same results (cf. v6 in Supplementary Material). In v4 the deformation is further confined to 
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regions that generally show high fieldmap values (Gholipour et al. 2008b). This might carry 

the constraints  too far, as the advantages over the uncorrected case further diminish.  The 

same  picture  occurs  for  additional  strict  limitation  of  the  deformation  direction  (v7  in 

Supplementary  Material),  while  with  increased  iterations  the restriction  to  the mask fails 

altogether (v8 and v9 in Supplementary Material) . In v5 B-spline regularization is employed 

to derive smoother deformation fields even with few iterations. Although the fields indeed 

present  more  continuous,  their  spatial  pattern  is  absolutely  unreasonable  for  real  data, 

entailing consistently worse results in the evaluation. B-spline regularization does not yield 

satisfactory  results  in  combination  with  any  other  parameter  sets  either  (v10  -  v16  in 

Supplementary Material).

Deformation fields

Deformation fields are evaluated using the subject’s fieldmap and topup derived shiftmap or 

the  ground truth  distortion  field as  a  reference.  Overall,  much closer  resemblance  to  the 

reference field is achieved for the simulated than for the real data (Fig. 2a vs b). Because 

fields and correlations are highly similar between fieldmap and topup correction, Figure 2 

only shows the results for the fieldmap based method for clarity. Outcomes for topup derived 

fields  can  be  found  in  Supplementary  Figure  5  and  7.  Nonlinear  coregistration  with  v1 

parameter settings achieves a decent convergence with the reference field in the simulation, 

as showcased for an echo spacing of 0.7 ms in Figure 2a.  Considering the full  range of 

distortion levels, correlation values start low but monotonically increase up to almost 0.65 for 

an echo spacing of 1 ms (Fig. 2c). In stark contrast, the real data deformation fields differ 

drastically from the reference fields, as exemplified on a single subject in Figure 2b. The 

shifts  partly  even  point  in  the  opposite  direction  of  the  fieldmap  which  is  reflected  by 

negative  correlation  values  (Fig.  2d).  The span between maximum positive  and negative 

shifts is higher than in the reference field for real data and simulated data with moderate 

distortions (Fig. 2d,e). Deformation fields generated with higher directional restriction in v2 

appear very similar to v1 visually, but correlation values indicate worse correspondence to 

the reference field for the simulated data. The range of shift values is even larger than for v1 

in both datasets. In v3 the reduction of iterations leads to reduced field continuity and shift 

values. However, the reference field correlation and spatial pattern are clearly improved for 
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real data and similar to v2 for simulated data. Fieldmap masking in v4 generates very low 

shift magnitudes even within the mask and low correlation to the reference fields. B-spline 

regularization in v5 positively impacts on the smoothness of the fields and increases shift 

magnitude. This however comes at the cost of declined spatial resemblance to the reference 

field. 

Group masks

The minimal group EPI masks delineate which areas of the brain are covered by signal in the 

EPI image of each subject in the sample. The group mask after fieldmap correction illustrates 

an increased coverage across subjects of prefrontal  and anterior temporal areas as well as 

posterior portions of the occipital lobe and the cerebellum (Fig. 3). However, more posterior 

regions of orbitofrontal and temporal cortex, as well as parts of hippocampus, amygdala and 

the pons are covered to a lesser extent by the group mask after fieldmap compared to no 

correction. In frontal areas, the mask seems to partially extend beyond the cortex. The group 

mask after topup correction shows a similar pattern, although differences to no correction are 

slightly less extreme. After nonlinear coregistration according to v1, the mask shows similar 

gains in frontal, temporal and cerebellar regions, but there is also an increased coverage in 

OFC and no decrease in subcortical regions. Strict limitation to phase encoding direction in 

v2 entails a mask shape similar to v1, although no increases occur in temporal and less in 

orbitofrontal regions. The same is true for restricted iterations in v3 and additional fieldmap 

masking  in  v4,  although  gains  are  generally  even  smaller.  Finally,  v5  with  B-spline 

regularization yields almost no increase of group mask extents. The spatial variability of EPI 

masks across subjects as judged from mask group average and standard deviation reflect the 

patterns described for the minimal group mask above (not shown).
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Similarity to anatomy

Visual inspection of the group average EPI image in relation to anatomical reference reveals 

two main aspects of fit, namely alignment of grey and white matter (gm/wm) boundaries and 
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fit to the outer brain contour. Figure 4a illustrates that both fieldmap and topup correction 

greatly improve gm/wm fit, exemplified on the genu of the corpus callosum which suffers 

substantial misregistration in the uncorrected image. While both corrections lead to a better 

fulfillment of the brain outline in prefrontal and partly in temporal regions, the discrepancy 

between EPI and T1w image in orbitofrontal areas increases. In line with these observations, 

group level  EPI  to  T1w similarity  as  assessed  by normalized  mutual  information  (NMI) 

increases for the whole brain (Fig 4b, first row) but decreases when calculated within an OFC 

mask (Fig 4c, first row). Excessive deformation through v1 nonlinear coregistration matches 

the outer brain borders at the cost of massively corrupting gm/wm boundary fit. Moreover,  a 

blurry group average indicates inconsistent results across subjects. These observations are in 

line with clearly reduced and widespread NMI values. Very high CR values imply overfitting 

based on the closely related cross correlation metric that was used for nonlinear registration. 

The group average of v2 is much clearer and shows better alignment of gm/wm boundaries, 

as the EPI images is not stretched in ventral direction. At the same time, this leads to worse 

outline fit in temporal regions. Whole brain NMI shows even lower values for v2 than for v1, 

while the CR values are less extreme. V3 with fewer iterations improves both gm/wm and 

outline fit compared to no correction, the former to a lesser and the latter to a greater extent 

than fieldmap and topup correction. This is also reflected in the NMI values. CR values are 

similar to v2. Restrictive masking in v4 results in slightly less improvement than achieved 

with v3. B-spline regularization in v5 yields worse outline fits and whole brain NMI values.

Direct comparison of corrected images

Global voxelwise correlation of each subject’s EPI mean image across correction methods 

(including no correction) yields overall high values (Fig 5a). However, based on intensity 

difference  maps,  local  distinctive  features  can  be  identified  (Fig  5c)  that  support  spatial 

patterns observed for the group masks and anatomical fit. Because outcomes from fieldmap 

and topup correction were again highly similar, only the results for fieldmap correction are 

shown  here  (for  topup  results  see  Supplementary  Fig.  11  and  13).  Subtraction  of  the 

uncorrected  from  the  fieldmap  corrected  image  illustrates  increased  signal  intensity  in 

temporal  and prefrontal  areas  and small  posterior  portions  of the cerebellar  and occipital 

cortex  after  correction  (Fig.  5c).  In  posterior  OFC  and  around  the  genu  of  the  corpus 
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callosum the intensity is decreased. Images corrected following v1 nonlinear coregistration 

show  by  far  the  lowest  correlation  to  fieldmap  corrected  images  (Fig.  5a).  From  the 

difference  maps it  becomes apparent  that  this  correction  involves  drastic  and widespread 

intensity  changes.  In  particular  the  corpus  callosum  and  the  straight  sinus  obviously 

underwent major displacement. At the same time, the intensity decrease in OFC observed for 

fieldmap correction is absent. These findings are also reflected in the direct contrast of the 

fieldmap and nonlinearly corrected image (Fig 5c, second column). Deformation restriction in 

v2  alleviates  the  extreme  intensity  changes,  suiting  increased  correlation  values.  The 
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divergence in central areas remains, although it is more focused on straight sinus and the 

splenium of the corpus callosum. A major difference to v1 and fieldmap correction is the lack 

of  intensity  increase  in  temporal  regions.  While  the  latter  issue  also  holds  for  v3,  the 

reduction in iterations succeeds to limit differences mostly to pre- and orbitofrontal areas (yet 

without  signal  decrease in  OFC).  Only little  deviations  remain  around the straight  sinus, 

which are diminished by fieldmap masking in v4. Finally, with B-spline regularization in v5, 

nonlinear correction fails to produce intensity changes in areas affected by distortion and 

instead  leads  to  signal  displacement  around  the  straight  sinus.  Intensity  values  of  one 

subject’s  fieldmap  and nonlinear  (v3)  corrected  images  are  plotted  against  each  other  in 

Figure 5b.

Relation to ground truth

The simulated undistorted image is used as a ground truth for the arte
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ificially distorted and subsequently corrected images. It is worth noting, that in this context, 

fieldmap correction represents unwarping with the exact same field that was used to distort 

the image in  the  first  place.  This  procedure does  not  lead  to  a  stainless  recovery  of  the 

undistorted image, because standard fieldmap correction does not account for the intensity 

accumulations  associated  with  geometric  distortions  (see  Fig.  6b  exemplifying  visual 

inspection for one level  of distortion).  Likewise,  fieldmap correction does restore ground 

truth  correlation,  especially  for  strong  distortions,  but  not  to  the  full  extent  (Fig.  6a). 

Nonlinear coregistration in most cases entails a decline in correlation values, especially for 

small  to  moderate  distortions.  Correction  according  to  v1  leads  to  decreased  correlation 

values  for  all  levels  of  distortion.  Although  the  visual  impression  of  the  correction  is 

reasonable on the first glance, a closer look reveals that the image is excessively deformed in 

the ventral direction. Moreover, the signal in orbitofrontal regions appears to be stretched in 

posterior rather than anterior direction as would be appropriate judging from the distortion 
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field (see also Fig 2a, first vs second row). Correlation values for v2 closely resemble those 

for v1, while visually the deformations seem to be less extreme, especially in OFC. Restricted 

iterations in v3 still  improve the visual appearance of the distorted image but to a lesser 

extent  than  fieldmap  correction.  Quantitatively,  correlation  values  are  slightly  increased 

through the v3 correction for larger distortions (> 0.6 ms). Fieldmap masking in v4 gives a 

similar picture. B-spline regularization (v5) seems to entail favourable results in terms of the 

shape of the corpus callosum but not for frontal regions. Correlation to the ground truth is  

relatively low.

Discussion

The two main objectives underlying the present study were straightforward implementation 

and comprehensive large-scale evaluation of nonlinear  coregistration for the correction of 

distortion artefacts. While these overall aims were met, the obtained results call into question 

the applicability of the investigated approach. The correction of distortion artefacts through 

nonlinear coregistration was not successful in general. However, considerable variation in the 

outcomes  was observed across  datasets  and the employed measures  partly  diverged.  The 

initial evaluation of similar methods usually relies on few images or artifical data and fails to 

capture the perfomance across larger and diverse datasets. The results obtained here highlight 

the  importance  of  secondary  exhaustive  assessments  of  new  approaches  in  terms  of 

robustness and required conditions before the adoption to common analysis procedures can 

be considered.

User-friendly implementation with commonplace tools

While  former  studies  on nonlinear  coregistration  focused on the  development  of  suitable 

algorithms, the goal here was the translation into a practical preprocessing step. This was 

realized  by  integrating  the  popular  normalization  tool  ANTs  (Avants  et  al.  2011) and 

commands from other common neuroimaging software into a single easy-to-use pipeline with 

Nipype (Gorgolewski et al. 2011) (Fig. 1). The applied transformation model SyN (Avants et 

al. 2008) has been shown to outperform a number of available algorithms (Klein et al. 2009; 

Murphy et  al.  2011) and explicitly  enables  large  deformations  like  those  required  in  the 

current use case. Importantly, this framework allows flexible parameter variation including 
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restriction  of  the  deformation  direction  and  B-Spline  regularization  (Tustison  & Avants 

2013).  The  pipeline  only  requires  the  EPI  and  surface  extracted  T1w  image  as  inputs, 

whereas  existing  approaches  often  rely  on  additional  scans  derived  with  spin  echo  EPI 

(Studholme et al. 2000), high resolution gradient echo EPI (Gholipour et al. 2008a) or non-

EPI (Villain et al. 2010) sequences. Computing the nonlinear transformation of a mean EPI 

image  using  the  proposed  pipeline  only  takes  a  few  minutes,  whereas  others  report 

computation times of about one hour (e.g. Gholipour et al. 2008a) .

Comprehensive evaluation employing multiple measures

The  evaluation  of  accurate  coregistration  is  not  a  trivial  problem  (Crum  et  al.  2004), 

especially in the case of EPI and T1w image pairs where typical procedures such as manual 

segmentation (Klein et al. 2009) are not feasible. Common practice is a combination of visual 

inspection and quantitative similarity metrics like mutual information  (Hutton et al.  2002; 

Cusack et al. 2003). However, the former remains subjective and difficult for large samples9 

and the  latter  does  not  provide  any anatomical  meaning  (Crum et  al.  2004).  In  previous 

studies of nonlinear BOLD EPI and T1w coregistration, evaluation was usually limited to 

these two measures  (Kybic et al.  2000; Gholipour et al.  2008a), although Studholme and 

colleagues  additionally  assessed  the  distance  between  manually  placed  landmarks 

(Studholme et al. 2000). The present study employed a greater variety of outcome measures 

to  capture  different  aspects  of  registration  quality.  For  instance,  voxelwise  correlation 

(Chambers et al. 2014) (Fig. 5a,b and 6a,b) and direct intensity differences (Fig. 5c) provided 

additional information about the corrected images. Careful examination of the deformation 

fields (Fig. 2) turned out to be a valuable tool to assess the quality and remaining issues of the 

transformation.  The evaluation  of  minimal  group masks (Fig.  3)  addresses  the  pragmatic 

issue  of  compromised  group  level  overlap  due  to  different  artefacts  across  individuals 

(Cusack et al. 2003). However, in the present context mask extents were not a reliable proxy 

for overall performance (cf. Tab. 2, results for v1 and v2). The comprehensive assessment 

came at  the  cost  of  a  higher  complexity  of  results,  challenging  overarching  conclusions. 

Coincidentally,  converging  evidence  across  measures  regarding  spatial  aspects  of  group 

masks, anatomical fit and intensity difference maps could strengthen ensuing conclusions and 

9 still “careful visual inspection remains the first and most important validation check available for previously 
unseen data” (Crum et al. 2004)
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support  validity  of  the  single  measures. Even  divergence  should  not  be  considered  a 

drawback as the additional information can foster a deeper understanding of the method and 

the results. For example, the two metrics used to measure EPI and T1w similarity yielded 

disturbingly  divergent  results,  with CR diagnosing much higher  similarity  after  nonlinear 

correction than NMI (Fig. 3b,c). This incoherence however, can be attributed to CR being 

closely  related  to  the metric  used for  optimization  during  the transformation.  It  is  worth 

noting, that all previous studies discussed above employ the same metric for optimization and 

correction, potentially limiting the informational content of respective measures.

Comparative approach in a large sample

Apart from a more extensive set of outcome measures the present study stands out from prior 

ones in terms of the employed dataset. In general, to improve feature control and establish a 

ground truth comparison, earlier studies relied on simulated (Kybic et al. 2000; Gholipour et 

al. 2008a) or phantom data (Studholme et al. 2000). Because such images do not reflect all 

characteristics of real data and the obtained results remain an approximation, evaluation is 

usually complemented with real data. Yet real datasets are typically confined to a few image 

pairs (Studholme et al. 2000; Gholipour et al. 2008a). While Kybic and colleagues claim their 

method was tested on “several hundreds of images”, documented results shrink to the visual 

presentation  of  a  single  image  with  rather  moderate  distortions  (Kybic  et  al.  2000).  In 

contrast, the results presented here are based on a total of 73 real images acquired according 

to latest standards. Initial testing was performed on another set of over 300 images (Enhanced 

Nathan Kline Institute - Rockland Sample) (Nooner et al. 2012) which did not undergo full 

evaluation. Based on the large sample size, outcome measures could be obtained on the group 

level  to  assess the  method’s  robustness  and potential  for widespread application.  In fact, 

visual inspection of single subjects’ corrected images partly appeared more reasonable than 

the obtained group level results would suggest. This indicates a lack of robustness across 

subjects and it is possible, that similar problems would be encountered if previous approaches 

were tested on larger samples. The dataset also comprised additional scans for fieldmap and 

reverse phase encoding based distortion correction. The proposed procedure could thus be 

evaluated in direct comparison to tried and tested approaches, which is of particular interest 

for guiding decisions in “real life” application. Again, this information is not contained in 
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most  prior  studies,  although  Kybic  and  colleagues  compare  their  procedure  to  manual 

correction (Kybic et al. 2000). To exploit the aforementioned advantages of synthetic data, a 

simulation was performed in addition to the real data. Different from most prior approaches, a 

real  fieldmap  was  used  to  introduce  realistic  distortions  as  proposed  by  Chambers  and 

colleagues  (Chambers et al. 2014). The evaluation outcomes differed considerably between 

simulated and real data (Tab. 2), most obviously illustrated for the deformation fields (Fig. 2a 

vs b). Potential reasons are manifold and include difference in resolution and smoothness as 

well as extreme intensity accumulations in the simulated data (see Supplementary Fig. 3). 

The latter implies that the nonlinear procedure could benefit from additional preprocessing to 

overcome intensity nonuniformity  (Chambers et al. 2014). In any case, these observations 

underline the importance of thorough evaluation also based on real data.

Nonlinear coregistration: issues and insights 

Nonlinear  coregistration  of  BOLD EPI  and T1w images  within  the  proposed framework 

turned out much more challenging than expected. First, a suitable preprocessing procedure 

had to be set up to render the images suitable for direct coregistration (Fig. 1b). Because of 

the multitude of (interacting)  parameters  in ANTs, extensive testing was required to find 

reasonable settings. Throughout the testing process there emerged a general trade off between 

the need for large deformations in affected areas on the one hand and unreasonable results 

produced by unconstrained transformation on the other (cf.  Tab. 2). Different approaches 

were pursued to address this issue. Following Gholipour and colleagues, deformations were 

restricted  to  phase  encoding  direction  (Gholipour et  al.  2008a).  However,  only  when 

convergence was prohibited through the reduction of iterations, the outcomes were notably 

improved (v3). Because this approach conversely did not achieve sufficient correction,  an 

alternative idea was to allow convergence, but only within a mask comprising regions that 

typically show high values in fieldmaps (Supplementary Fig. 1). Unfortunately, ANTs was 

very sensitive regarding image masking; the expected spatial restriction could not be realized 

for a high number of iterations (cf. v8 and v9 in Supplementary Material) and posed too high 

constraints when combined with few iterations (v4). While explicit B-Spline regularization of 

the deformation fields succeeded to enforce physically plausible smoothness, no satisfactory 

correction could be obtained (v5 and v10 - v16 in Supplementary Material). This is surprising 
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in so far, as previous approaches successfully use spline based estimation (Kybic et al. 2000; 

Studholme et al. 2000; Gholipour et al. 2008a). A possible explanation is that with 26 mm the 

initial knot spacing was set too high and supported registration of far apart image features in 

the absence of sufficient information in the EPI image (Studholme et al. 2000).

While  nonlinear  coregistration  in  general  performed  drastically  worse  than  fieldmap  and 

topup correction, one distinctive feature stands out, that on the first glance could be deemed 

an advantage. EPI signal coverage and similarity to the structural image decreased through 

fieldmap  and  topup  correction  in  the  OFC,  while  they  mostly  increased  with  nonlinear 

coregistration (Fig. 3 and 4). However, this observation can probably be explained by actual 

signal loss in the OFC due to spin dephasing within single voxels  (Ojemann et al.  1997; 

Glover 1999). Distortions and dropout are related but distinct phenomena and the latter is 

usually  not  addressed  by  retrospective  correction  methods  discussed  here  (although  see 

Jenkinson 2004). It seems likely that fieldmap and topup corrected images accurately reflect 

the signal loss, while nonlinear coregistration attempts to overcome this loss by artificially 

stretching signal into the affected regions. This is in line with poor results for the case of 

simulated signal loss reported by Gholipour and colleagues  (Gholipour et al. 2008a). Given 

the observed extension of EPI signal beyond the brain particularly after fieldmap correction 

(Fig 3  second row), it is possible but not highly likely that a tendency for overcorrection 

brings about more signal decrease in OFC than would be appropriate.

Limitations and future directions

The limitations of the proposed method are obvious and should discourage its premature use. 

Importantly, the presented results pertain to the specific procedure and tools that used here 

and do not  necessarily  hold  for  alternative  implementations.  Notwithstanding  the  current 

issues, the basic idea of nonlinear coregistration for distortion correction bears potential and 

should continue to be explored. An interesting approach has been suggested by Gholipour 

and colleagues (Gholipour 2008c). They use a fieldmap template for an initial coarse round 

of  deformation  which  is  subsequently  refined  through  nonlinear  coregistration.  Thus  the 

critical gross displacements are dealt with by the fieldmap while nonlinear transformation 

provides accurate individual  alignment.  However, this  procedure depends on a reasonable 

fieldmap template. Future work might establish to what extent such a template generalizes 
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across studies and can circumvent the need for additional scans. Along similar lines, Daga 

and  colleagues  (Daga  et  al.  2013) proposed  an  elegant  procedure  combining  phase 

unwrapping  with  confidence  estimation  regarding  the  obtained  B0  field  to  confine  the 

following nonlinear registration to low confidence areas. While the latter approach does not 

obliviate  fieldmap  acquisition,  the  combination  of  methods  holds  additional  potential  to 

overcome a considerable drawback of fieldmap (and topup) based procedures: due to their 

static nature fieldmaps cannot account for artefacts arising from the interaction of distortion 

and subject movement (Andersson et al. 2001; Jezzard 2012).  Fieldmap correction followed 

by individual  nonlinear  refinement  of  each  volume in  a  time series  could  be a  solution. 

Another  objective  of  future  research  should  be  to  assess  the  impact  of  nonlinear 

coregistration, and distortion correction in general, on subsequent function analyses. This has 

been addressed to some extent in terms of task-based activations (Cusack et al. 2003; Villain 

et al.  2010) and an attempt to assess changes in resting state functional connectivity  was 

made  in  the  context  of  the  current  project  (see  Supplementary  Fig.  15).  However,  both 

approaches suffer from the absence of a ground truth comparison.  As distortion artefacts 

increase with field strength  (Dietrich et al. 2008), adequate correction will gain importance 

with the current rise of ultra high field fMRI (Jezzard 2012). Remarkable improvements in 

contrast and resolution that can be achieved with EPI sequences at 7 Tesla might at the same 

time call for and facilitate nonlinear coregistration.

Conclusion

Direct  nonlinear  BOLD  EPI  to  T1w  coregistration  was  implemented  in  a  user-friendly 

framework  and  thoroughly  evaluated  on  a  large  dataset.  Despite  extensive  attempts  to 

optimize the correction, no satisfactory results could be obtained. The trade off between large 

deformations and suitable constraints as well as the lack of robustness across subjects and 

data types emerged as the prevailing issues. While the former problem might be overcome 

with  more  specifically  tailored  transformation  algorithms  or  a  combination  with  general 

information from fieldmaps, the latter concern is potentially harder to address. In the face of 

individual  differences  in  distortions  and  varying  image  quality,  robust  automatization  of 

nonlinear  BOLD  EPI  and  T1w  coregistration  is  difficult  to  achieve.  On  these  grounds 

extensive critical evaluation of respective approaches is of crucial importance.
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