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Abstract

Achieving commercial production of electricity by magnetic confinement fusion re-
quires improvements in energy and particle confinement. In order to better understand
and optimise confinement, numerical simulations of plasma phenomena are useful. One
particularly challenging regime is that in which long wavelength MHD phenomena in-
teract with kinetic phenomena. In such a regime, global electromagnetic gyrokinetic
simulations are necessary.

In this regime, computational requirements have been excessive for Eulerian meth-
ods, while Particle-in-Cell (PIC) methods have been particularly badly affected by the
‘cancellation problem’;, a numerical problem resulting from the structure of the elec-
tromagnetic gyrokinetic equations. A number of researchers have been working on
mitigating this problem with some significant successes.

Another alternative to mitigating the problem is to move to a hybrid system of
fluid and gyrokinetic equations. At the expense of reducing the physical content of
the numerical model, particularly electron kinetic physics, it is possible in this way to
perform global electromagnetic PIC simulations retaining ion gyrokinetic effects but
eliminating the cancellation problem.

The focus of this work has been the implementation of two such hybrid models into
the gyrokinetic code EUTERPE. The two models treat electrons and the entire bulk
plasma respectively as a fluid. Both models are additionally capable of considering the
self-consistent interaction of an energetic ion species, described gyrokinetically, with
the perturbed fields.

These two models have been successfully benchmarked in linear growth rate and
frequency against other codes for a Toroidal Alfvén Eigenmode (TAE) case in both the
linear and non-linear regimes. The m = 1 internal kink mode, which is particularly
challenging in terms of the fully gyrokinetic cancellation problem, has also been suc-
cessfully benchmarked using the hybrid models with the MHD eigenvalue code CKA.

Non-linear simulations in this TAE case have been performed confirming the ana-
lytical prediction of a quadratic relationship between the linear growth rate of the TAE
and the saturated amplitude of the TAE for a range of moderate values of the linear
growth rate. At higher linear growth rate, a slower scaling of saturated amplitude
with linear growth rate is observed. This analysis has been extended to include the
non-linear wave-wave coupling between multiple TAE modes. It has been shown that
wave-wave coupling results in a significant reduction in the saturated amplitude.

It has been demonstrated that both plasma elongation and ion kinetic effects can
exert a stabilising influence on the internal kink mode. A population of energetic
particles can also exert a stabilising influence at low normalised pressure. At high
normalised fast particle pressure the stabilised kink mode has been shown to give way
to the m = 1 EPM, which has been simulated both linearly and non-linearly (the
‘fishbone’ mode).

The first self-consistent simulations of global modes in the magnetic geometry of
the optimised stellarator Wendelstein 7-X have been performed both linearly and non-



linearly. Limitations have been encountered in performing simulations in 3D geometry.
A hypothesis for the cause of these problems is outlined and ideas for mitigation are
briefly described.

In addition to the hybrid model simulations, some of the first utilisations of a new
scheme for mitigating the cancellation problem in the fully gyrokinetic regime have
been carried out in the framework of this thesis. This scheme, which was developed
separately, is concisely described in this work. The new scheme has been benchmarked
with existing gyrokinetic and hybrid results.

The linear Wendelstein 7-X simulations and linear and single mode non-linear TAE
simulations have been repeated with the new model. It is shown that bulk plasma
kinetics can suppress the growth rate of global modes in Wendelstein 7-X. The results
of fully gyrokinetic TAE simulations, the first to have been performed to our knowledge,
are shown to be in close agreement with those results obtained using hybrid models.

In the TAE case, the hybrid models are an order of magnitude less computationally
demanding than the new gyrokinetic scheme, which is in turn at least an order of
magnitude less computationally demanding than the previous gyrokinetic scheme.

ii



Contents

1 Introduction
1.1 The energy problem . . . . . . . . . .. ...
1.2 Nuclear fusion . . . . . . . . .

2

1.3

1.4
1.5
1.6
1.7
1.8

1.21
1.2.2
1.2.3
1.24

Inertial confinement fusion . . . . . . .. ... ... ... .. ..
Magnetic confinement fusion . . . . . . . . ... ... ... ...
Toroidal devices . . . . . . . . . . ... ... .
Contemporary experiments . . . . . . . . . .. .. .. ... ...

Energetic particle physics . . . . . . . ... L

1.3.1
1.3.2
1.3.3
1.3.4

Alfvén waves . . . . . ...
Principal drive and damping mechanisms . . . . . . . . . . . ..
Non-linear saturation mechanisms . . . . . . . .. .. ... ...
Fast particles in optimised stellarators . . . . . .. .. ... ..

Other global modes . . . . . . . .. .. ...
Review of numerical modelling efforts . . . . . . .. .. ... ... ...
Status of EUTERPE . . . . .. .. .. ..
The contribution of this thesis . . . . . . . ... .. .. ... ... ...
Outline . . . . . . .

Model equations
2.1 Gyrokinetics . . . . . ...

2.2

2.1.1
2.1.2
2.1.3
2.14
2.1.5

Kinetic system of equations . . . . . . ... ... ... .....
Gyrokinetics by variational methods . . . . . . ... ... ...
v formulation . . . . ...
p| formulation . . . . ..o
Mixed variables formulation . . . . . . .. ... ... ... ...

Fluid and fluid-hybrid models . . . . . . .. ... .. ... ... ....

221
2.2.2
2.2.3
224
2.2.5
2.2.6

Continuity equation from gyrokinetics . . . . .. .. ... ...
Ideal Ohm’s law and advective pressure closure . . . . ... ..
Reduced MHD bulk plasma, gyrokinetic fast ion model . . . . .
Recovery of reduced ideal MHD . . . . . . ... ... ... ...
Comparison with perturbative code CKA-EUTERPE . . . . . .
Non-ideal closures . . . . . . . . . . . .. ... ... ... ... .

iii

CO 0O O Ul W W N — =

el T e T e
0 3 U i~ i W ©

19



3 Numerical implementation

3.1 EUTERPE code overview . . . . . . . . . . . . . ... ... ......
3.1.1 Gyrokineticsolver . . . . . . . ...
3.1.2 Distribution functions . . . . . . . . ... ...
3.1.3 Gyrokinetic field equations . . . . . . ..o
3.2 Finite Larmor radius . . . . . . . . . .. ...
3.3 Coordinates . . . . . . . ..o
3.4 Normalisation . . . . . . . . . . . ...
3.5 Fourier filtering . . . . . . . .. L
3.6 Phase factor transformation . . . . . . .. ... ...
3.7 Plasma equilibrium . . . ... ... 00000
3.8 Cancellation problem and mitigation . . . .. ... .. ... ... ...
3.8.1 Adjustable control variate scheme . . . . . . . ... ... .
3.8.2 Mixed variables scheme . . . . . . . . ...
3.9 Hybridmodels. . . . . . .. ...
3.9.1 Numerical scheme . . . . . . . . . ... ..
3.10 Diagnostics . . . . . . . L
4 Linear simulations
4.1 ITPA TAE benchmark . . . . . . . ... .. ... ... ... ......
4.2  Convergence studies and computational requirements . . . . . . . . ..
4.3 TAE-continuum interaction . . . . . . . . . . . .. ... .. ... ...
4.4 TAE elongation study . . . . . .. .. .. ... .
4.5 Internal kink mode . . . . . . . .. ...
451 Inascrewpinch. .. ... ... ... ... ... .........
452 Inatokamak . . ... ... .. ... ... ...
4.6 Linear m=1EPM . . . . . . . . . ... ...

4.7 Global mode in Wendelstein 7-X

4.7.1 Limits to stellarator simulations . . . . . . . . . . .. ... ...

5 Non-linear simulations

5.1 Toroidal Alfvén Eigenmode . . . . . . .. . ... ... ... ... ...
5.1.1 Non-linear ITPA TAE benchmark case . . . . .. ... ... ..
5.1.2 Non-linear wave-wave interaction . . . . . . . . . . . ... ...

5.2 Fishbone instability . . . . . . . .. ...

5.3 Non-linear stellarator . . . . . . . . . . . . . ... ...

6 Conclusions

6.1 Keyresults . . . . . . . .
6.2 Outlook . . . . . . .

v

40
40
42
44
44
46
47
48
49
49
50
o1
53
95
o7
o8
60

62
63
67
70
73
I0)
75
76
79
81
83



Chapter 1

Introduction

1.1 The energy problem

Energy must be expended to sustain and facilitate human life. Electrical energy is
convenient because it can be cost efficiently transmitted over long distances and used
in a variety of important processes. These include transduction to mechanical work,
thermal heating, and visible light.

The principal disadvantage of electrical energy is that it cannot be stored at a
cost efficiency, or weight or volume density, that is competitive with other forms. The
superior storage characteristics of liquid hydrocarbon fuels in particular, such as oil
and gas, has led to their widespread use as vehicle fuel.

The production of energy by burning hydrocarbon fuels also produces greenhouse
gases. Emission of greenhouse gases has been predicted by numerical modelling to raise
the average temperature of the earth [1]. The resultant temperature may be further
from the optimal for human purposes than the current temperature. Even if it is not,
any change implies some cost of adaptation. It is therefore desirable to substitute these
fuels by fuels that do not produce greenhouse gasses.

Any such substitution implies costs, which must be weighed against the benefits in
terms of reduced emissions. It is therefore important to minimise the cost of any such
alternative. Currently there are three broad categories of such alternatives that have
been pursued on an industrial scale.

e ‘Renewable’ energy sources produce electrical energy using radiation from the
sun (solar PV, solar thermal, wind), energy from the earth’s core (geothermal),
or from astronomical gravitational potential energy (tidal). The most cost effec-
tive such systems are solar thermal and wind, although the cost of PV has been
dropping exponentially in recent years. Both ultimately take advantage of en-
ergy produced by nuclear fusion in the sun. Both however are intermittent, and
therefore require storage on a scale much greater than has so far been attempted.
The development and commercialisation of cost efficient, dense means of energy
storage is an important area of active research.

e ‘Biofuels’ are synthetic hydrocarbons produced by natural processes using radi-
ation from the sun. These directly substitute mined hydrocarbon fuels. Biofuels



can be regarded as a form of solar power that does not suffer from the intermit-
tency problem. However, production is both land and manpower intensive and
therefore costly.

e Nuclear fission produces electricity by accelerating energetically favourable nu-
clear reactions in naturally occuring ores. It does not require large scale energy
storage and is both land and manpower efficient. However, it produces long last-
ing dangerous waste, the practicality of safe disposal of which remains a matter
of discussion.

Nuclear fusion promises the possibility of an electricity source not limited by fuel,
with no intrinsic carbon emissions, no additional storage requirements, and which does
not produce waste that remains dangerous for longer than a single human lifetime.
The building of a working reactor capable of net energy production, and the design
of the most cost efficient possible commercial reactor, is an actively investigated open
question in research, and the motivation for this work.

1.2 Nuclear fusion

Nuclear fusion is the process by which two atomic nuclei are combined to produce a new
nucleus of greater atomic mass. We are particularly concerned with fusion reactions
for which the products have a more negative binding energy than the fuels, releasing
kinetic energy which may be used to produce electricity.

Although such reactions are energetically favourable, the Coulomb repulsion be-
tween electrically charged nuclei results in a high energy barrier which nuclei must first
overcome. The probability of even the most favourable fusion reactions occuring at
room temperature is so low that there is no known means of useful energy production
in such conditions.

The fusion reaction with the largest reaction cross-section is Deuterium-Tritium
process, the peak cross-section of which occurs with a fuel particle thermal energy of
order 10 keV. At such temperatures, the Deuterium-Tritium fuel is a fully ionised
plasma. The Deuterium-Tritium reaction is as follows,

’D + T — *He(3.5MeV) + n°(14.1MeV). (1.1)

The optimum temperature arises because the probability of two fuel particles col-
liding decreases with temperature while the probability of such a collision resulting in
a successful fusion reaction increases. Quantum mechanical effects are important in
calculating the reaction cross-section, which is significantly increased by tunnelling.

Heating particles to the high temperatures required for optimal fusion cross-sections
immediately presents the problem of containing highly energetic particles within a
reactor vessel of reasonable size. A number of possible solutions to this problem have
been proposed. These are divided broadly into two categories, inertial confinement and
magnetic confinement methods.



1.2.1 Inertial confinement fusion

The first example of a fusion reactor known to humans is the sun. The sun is an
inertial confinement fusion device, in which high pressure in the core is produced by the
strong gravitational forces resulting from its very large mass. However gravitational
confinement fusion in the sun has an extremely low power density, on the order of
1 W/m3, compared with order of 100,000 W/m3 for a gas turbine. Imitating the sun
is therefore unlikely to be a fruitful approach.

Inertial confinement is also the method used to produce the first man-made fusion
device and the first man-made fusion device with a net energy output. A thermonuclear
bomb uses a chemical explosive to initiate a fission device which in turn compresses a
small core of fusion fuel to sufficiently high pressure that significant fusion can occur.
This fuel is usually Deuterium-Tritium but may also be Deuterium-Deuterium. It had
been proposed that a pulsed commerical powerplant could be produced by detonating
a series of thermonuclear bombs in a large cavern of water, but this is unlikely to be
cost effective.

Alternatively, pulsed inertial confinement fusion is attempted by using lasers to
compress a fuel pellet. To be viable, this method requires high efficiency lasers coupled
with pellets that can be produced economically. Substantial effort and progress in this
regard is taking place at research laboratories such as the National Ignition Facility
(NIF) in the United States [2].

1.2.2 Magnetic confinement fusion

Since the inception of the field of fusion research for the purpose of electrical energy
production, magnetic confinement devices have generally been considered the most
promising. At the simplest level, magnetic confinement fusion devices employ magnetic
fields, usually generated by electromagnetic field coils, such that outward motion of
charged plasma particles is minimised.

In the presence of a magnetic field, B , charged particles are free to move along the
field lines. The speed at which they do so is called the parallel velocity, v = b U,

where b = B /B is the unit vector in the direction of the magnetic field and B is the
magnitude of the magnetic field. In the direction perpendicular to the magnetic field,
v, however, charged particle motion is opposed by the Lorentz force,

F = ¢t x B, (1.2)

where ¢ is the particle charge [3].
Charged particles therefore stream along the field lines in a helical motion with a
radius called the Larmor radius, p, given by the equation,

muv
qB’

p= (1.3)

where m is the particle mass.

Since the Lorentz force is perpendicular to the change in velocity of the charged
particles, it does no work on the particles. The kinetic energy of the perpendicular
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motion of the charged particles is therefore conserved in a constant magnetic field. It
may therefore be useful to express this perpendicular motion in terms of a quantity

called the magnetic moment, y = mov? /2B. In terms of the magnetic moment, the

. . 2
Larmor radius is p = qv—‘i.

Magnetic field

Figure 1.1: The motion of a single particle in a magnetised plasma: helical motion
along the field lines.

The magnetic moment is adiabatically invariant, meaning that it is constant pro-
vided that variation in the magnetic field B is insignificant within one gyroradius p,
i.e. p/Lp < 1, where Lp is the characteristic length scale of magnetic field variation.

This property can be exploited to develop a simple magnetic confinement scheme
for charged particles, the magnetic mirror. In the magnetic field a linear magnetic
field with higher field strength at the extremities confines the plasma. Particles can
stream freely within, but as the magnetic moment is conserved and the magnetic field
does no work on the charged particles, the total kinetic energy of the particles must be
constant,

1 1
% <§mvﬁ + Emvi) = 0. (1.4)

This equation requires that as the magnetic field strength increases the parallel
velocity must decrease. Particles can therefore be reflected by sufficiently strong fields.
In this way particles may be confined along as well as across field lines.

However, the mirror effect only confines particles within a certain range of ratio of
parallel to perpendicular velocities, or pitch angles. Particles with pitch angles within
the ‘loss cone’ are merely slowed and not reflected at the ends of the device. Since
collisions will tend to equilibriate the plasma over time, these end losses lead to rapid
loss of particles from the entire plasma.

One solution to this end loss problem is to adopt a toroidal geometry, such that
particles can stream along the field lines indefinitely without being lost. So far, the
most successful magnetic confinement devices use a toroidal magnetic geometry.
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1.2.3 Toroidal devices

Figure 1.2: A schematic of a tokamak: a toroidal field generated by the toroidal
field coils confines the plasma radially. A toroidal current is then induced within
the plasma, generating a poloidal magnetic field which counteracts the VB drift.

Although toroidal geometries eliminate end losses, they introduce a new inhomo-
geneity of the magnetic field because the magnetic field strength is higher on the inside
of the torus than the outside. This results in a particle drift perpendicular to the
magnetic field and the gradient of the inhomogeneity in the magnetic field strength,
which also contributes to particle and energy transport,

. mvingg mUﬁéXVLg

_ 1.
V=58 B2 4B B (1.5)

where the second term is valid in the limit of small normalised plasma pressure, 3,

2M0P
B2
Physically, one can picture the drift arising because the Larmor radius is smaller
where the magnetic field strength is higher. The particle therefore moves further on
the low B side of its orbit than on the high B side of its orbit.
As the direction of this drift is dependent on the particle charge, it results in a
separation of ions and electrons. This charge separation generates an electric field,
which in turn causes further ‘E cross B’ drift radially out of the plasma,

p= < 1. (1.6)

(1.7)

Up =



Device ne(10m=3) | T(keV) | V(m?) | B(T) | Jior(MA) | Q
ASDEX 4] | 10 1 3 |31 |2 :
JET [5] 4 20 80 3.6 4 0.65
ITER [6] 10 8 830 5.3 15 10
EU-DEMO [1] | 8 13 ? 5.25 | 20 7
WT-AS[8] | 10 1 1 25 [ ~0 :
LHD [9] 1 5 30 129 [ ~0 §
W7-X [10] 18 5 30 (3 | ~0 :
Helias [11, 12] | 30 15 570 |5 | ~0 %

Table 1.1: Typical key parameters for four current and future tokamaks and four
current and future stellarators. As the plasma volume increases, extrapolated and
predicted ) factors are sufficient for a demonstration electricity-producing reactor.
Note that W7-X is yet to be operated with peak parameters and ITER, EU-DEMO,
and Helias are yet to be built. The EU-DEMO and Helias designs have not been
finalised. Optimised stellarators have some residual toroidal plasma current on the
order of 10 kA.

The particle losses caused by this drift are significant, so it is necessary to counteract
the vy field inhomogeneity drift in order to prevent it occuring.

By applying a poloidal field, the magnetic field lines shift poloidally with each turn
around the torus. This is characterised by the safety factor, ¢(r), which is defined at
each point in minor radius in terms of the ratio of the product of the major radius
and the toroidal magnetic field strength to the product of the minor radius and the
poloidal magnetic field strength,

TBt

q(r) = RB, (1.8)

As charged particles will follow the now helically twisted field lines, the radial position
of those particles will oscillate. The V B drift therefore averages to zero over time.

The means by which this safety factor profile is generated distinguishes the two
leading toroidal magnetic confinement concepts, the tokamak and the stellarator. In
a tokamak, this poloidal field is generated by running a current toroidally through the
plasma. This approach, however, has drawbacks, such as the current’s ability to drive
MHD instabilities and the restriction of the device to pulsed operation. In a stellarator,
this poloidal field is generated by the shaping of the magnetic field coils; the toroidal
current can be minimised to prevent current-driven instabilities and permit inherently
steady state operation, while retaining a safety factor profile.

1.2.4 Contemporary experiments

Since the first fusion experiments in the 1950s, newly constructed devices have been
approaching more closely the parameters required for self-sustaining fusion that pro-
duces an excess of electrical power. One important quantity is the fusion energy gain
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factor, (). The @ value is the ratio of power produced to external heating,

_ Pfus . Pfus
Pheat  Pr+ Pxpr+ Prr’

(1.9)

where the quantities in the denominator account for the various heating methods. P;
is the Ohmic heating, i.e. heating due to resistive dissipation of the toroidal plasma
current. Pypr is heating due to the injection of neutral particles, which become ionised
in the plasma. Pgp is the radio frequency heating.

In steady state operation, heating due to fusion and external heating must equal
the heat flux out of the device. In order to produce useful power, the fusion power
output must be at least equal to the external heating power, i.e. ) > 1. In practice,
a somewhat higher () value is needed to account for the inefficience of conversion of
fusion power to electricity, and of recirculation of this power to the heating systems.

If the plasma is fully self-heating, we no longer require external heating. In this
case, the denominator drops to zero and () = oo. The device is then said to have
reached ignition. To maximise (), we require a large Py and a low rate of loss of energy
from the device. The rate at which energy leaves the device can be parameterised by
a characteristic time scale, 7z, known as the energy confinement time.

In table 1.1, we compare parameters for the current and projected large fusion
experiments. With current devices, plasma conditions have been achieved which cor-
respond to those required for a net production of energy. In the JT-60U tokamak a
shot has been performed, without tritum fuel, which from the measurements one can
extrapolate 25% more power than was needed to heat the device would have been
produced if tritium fuel had been present.

The confinement of heat within the device is therefore no longer a fundamental
barrier to the demonstration of fusion energy, although improvements in confinement
remain very important as they can lead to increased device efficiency and therefore
reduced electricity cost. Further improvements in this respect will be important, and
perhaps necessary, for commercialisation.

One fundamental problem is how to engineer a device to survive under high neutron
bombardment over a long period of operation. Another is how to confine fast particles
so that the alpha particles deposit their energy within the plasma volume, heating the
plasma, and not on the walls, which could be damaged if too much energy is deposited
in too small an area. In the next section we discuss this second issue in greater detail.

A third fundamental outstanding problem is how to prevent or mitigate Edge
Localised Modes (ELMs) and disruptions, present in tokamaks. These current and
pressure-driven instabilities have the potential to damage the device by causing large
fluxes in areas of the first wall either directly or by the generation of runaway electrons.
One promising approach to solving this problem is the stellarator, which produces a
helical magnetic geometry without a toroidal current. In this case disruptions, as
current-driven instabilities, are not present, and ELMs are substantially smaller. How-
ever, stellarator configurations pose greater problems than tokamaks for past particle
confinement, which will also be considered in this work.

A final issue is how the plasma can be made self-heating. In the Deuterium-Tritium
reaction, 20% of the fusion power produced is contained in the kinetic energy of the

7



a—particles and 80% in the neutrons. Since the plasma is almost transparent to neu-
trons, the a—particles must be contained in the plasma long enough to thermalise and
deposit their energy by collisions.

Since the a—particles have considerably higher average velocity than the back-
ground plasma, they exhibit different confinement properties, and it is not necessarily
the case that a device that effectively contains D-T fuel will also effectively confine
fusion a-particles.

a-particle confinement also has other implications. The possibility of large numbers
of alpha particles being deposited in a short time or in a small area on the first wall of
a device also risks damaging the device.

This thesis will concern especially physics relevant to the control of energetic par-
ticles and instabilities that may influence energetic particle distribution.

1.3 Energetic particle physics

In this section, some more detailed physics relevant to energetic, or fast, particle be-
haviour in a magnetic confinement fusion device will be considered. A “fast” particle is
one that is considerably more energetic than the thermal energy of the bulk plasma. In
thermodynamic equilibrium, the bulk plasma will consist of particles with a Maxwellian
distribution of energies. Since highly energetic particles will be produced by fusion re-
actions, and by heating systems such as NBI and RF heating, the distribution of par-
ticles in a certain range of energies higher than the thermal energy will diverge from a
Maxwellian. It is this population with which fast particle physics concerns itself.

One topic of key interest is the interaction of fast particles with Alfvén waves, which
exist in a frequency range such that they can interact resonantly. This can greatly am-
plify fast particle transport above that expected without considering the response of
the thermal plasma to the fast particles. In a stellarator, there is the further com-
plication that trapped particles are imperfectly confined even in a completely stable,
collisionless plasma.

1.3.1 Alfvén waves

Alfvén waves are low frequency MHD waves, in which ions oscillate in response to the
restoring force of magnetic tension. In this work, we will be particularly concerned
with the shear Alfvén wave. The shear Alfvén wave is a low frequency transverse
electromagnetic wave that propagates along the magnetic field. It has the dispersion
relation,

w = vk, (1.10)
where w is the wave frequency, k| is the parallel wavenumber, and
B
Vg = —— (1.11)
o111

is the Alfvén velocity, with B the magnetic field strength, pg is the permeability of free
space, m; is the ion mass and n is the plasma density [13]. This dispersion relation will
be reproduced in the context of reduced ideal MHD later in this thesis.
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In a toroidal device with a helical field, there is a restriction on the allowed parallel
wave number, kj,

ky(r) = (n - %) /R, (1.12)

where m and n are poloidal and toroidal mode numbers respectively and R is the major
radius. This condition depends upon the location in minor radius because the helicity
of the magnetic field changes in general, given by the safety factor profile.

Furthermore, the plasma density generally will tend to decrease between the mag-
netic axis and the edge. The Alfvén velocity will therefore increase. The magnetic field
strength, B, can also be a function of radius.

Since both k| and v4 are functions of the minor radius, the mode frequency is also
a function of the minor radius. The changing mode frequency across the device means
that radially extended modes will become decorrelated. This is known as continuum
damping, and generally means that Alfvénic modes are stable. Alfvén eigenmodes that
are subject to continuum damping are known as ‘continuum modes’, and may give rise
to unstable modes if subject to strong external drive.

By analogy to Bragg reflection in optical media, however, periodic modulations
breaking a symmetry of the magnetic geometry create gaps in the continuous Alfvén
spectra, in which radially extended modes can exist without being subject to continuum
damping. In gaps created by toroidicity breaking the cylindrical symmetry of the
system, these modes are called Toroidal Alfvén Eigenmodes (TAEs) [14, 15].

Toroidicity is not the only such periodic modulation, giving rise to gaps. In shaped
tokamaks, gaps associated with ellipticity, reversed shear, and noncircularity can also
house radically extended Alfvén eigenmodes. In stellarators, the Alfvén continuum is
yet more complex, giving rise to gaps associated with e.g. helicity. Alfvénic physics in
stellarators is thus far incompletely understood.

Continuum modes strongly driven by energetic particles are referred to as Energetic
Particle Modes (EPMs). These typically occur when the energetic particle pressure is
comparable to the bulk plasma pressure, and will also be considered in the course of
this work.

1.3.2 Principal drive and damping mechanisms

Alfvén eigenmodes are generally stable in the absence of an energetic particle popu-
lation. When a species of energetic particles is present, it is possible that they can
resonate with the phase velocity of the shear Alfvén wave, v ~ v4. Energy can then
be transferred from particles to the mode by a mechanism called Inverse Landau damp-
ing. In this way wave-particle resonant interaction can drive marginally stable modes
unstable. These unstable modes in turn can cause redistribution of fast particles out
of the device.

Landau damping (as inverse Landau damping) is a fundamentally kinetic process,
due to the existence of gradients in the distribution function. In a simple illustrative
picture it can be described as follows. Particles moving with the same velocity as the
phase velocity of the wave (i.e. v4) experience the wave as stationary in their frame of
reference. As such, they do not interact. Particles with slightly lower velocity than the
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Figure 1.3: A sketch depicting inverse Landau damping due to a ‘bump on tail’
energetic particle population. A negative gradient in the velocity distribution of
the thermal ions (blue) can coincide with a strong positive gradient in the velocity
distribution of the energetic ions (orange) in the vicinity of a wave phase velocity

indicated by the dashed black line.

wave are accelerated by the wave, damping it, while those with slightly higher velocity
are slowed by the wave, driving it.

If there are more particles with a lower velocity than the phase velocity of the wave
than particles with a higher velocity than the wave, the wave is damped on net by
its interaction with the particles; this is often the case for a thermal plasma, hence
the term Landau damping. Inverse Landau damping occurs when there is a positive
gradient in the velocity of the particle distribution function. In a fluid treatment
the distribution function is replaced by average macroscopic quantities, and Landau
damping is therefore not present in the fluid description.

In figure 1.3, an illustrative ‘bump-on-tail’ distribution function is plotted in which
a fast particle population provides a positive gradient in particle number around the
resonant position. This is a particularly simple illustrative case in which inverse Landau
damping would be present.

Energetic particle populations in fusion devices often have monotonically decreas-
ing distribution functions in energy, however. Even in this case, however, waves can
be driven by inverse Landau damping. Consider for instance the toroidal angular
momentum, given by,

P, =mRuv, — ZeRA,. (1.13)

This function decreases with R, so 0P,/OR < 0. For a monotonically decreasing
distribution function in radius, df/0R < 0, so that df/0P, > 0. The wave can be
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driven as the distribution function increases monotonically with P, [14].

In the absence of energetic particle drive, Alfvén eigenmodes are generally stable
because of the damping effects of the bulk plasma. The principal damping mechanism
is due to interaction with the continuum. Continuum damping is generally proportional
to the gradients of the Alfvén velocity,

d?JA

1.14
24, (114)

v~

that is, the damping is proportional to the rate at which the mode becomes decor-
related by the variation in the SAW’s rate of propagation across the minor radius.
The presence of marginally stable global modes is principally due to the absence of
continuum damping in so-called continuum gaps, where the gradient is locally zero.

Through the position of these gaps in the frequency spectrum, continuum damping
places a strong limitation on the range of frequency of possible unstable modes and
their peak radial positions. A mode that is centred inside the continuum at its mode
frequency is unlikely to be unstable. Continuum damping can also act on gap modes,
however, if the radial spread of the mode permits them to interact with the continuum
far from the radial peak. Even in this case, continuum damping is generally greater
than other forms of damping by the bulk plasma.

In figure 1.4, we depict residual continuum interaction with a gap mode. In this
example continuum there is a gap below the minimum of the m = 2 harmonic, which
can house an AE that is not subject to continuum interaction. However, if the AE
is sufficiently radially extended it can encounter the continuum and interact with it
via the m = 1 harmonic. The significance of this continuum damping depends on the
structure of the mode and the strength of the coupling. Numerical tools treating such
continuua must be able to calculate the effect of such continuum interaction.

In addition to continuum damping, the presence of which depends upon the nature
of the continuum and therefore the particular equilibrium under consideration, there
are also bulk plasma dissipation mechanisms that are always present, although often
not dominant. These include ion Landau damping, and electron collisional damping.
These all depend on the properties of the thermal electrons and ions. Moreover other
forms of damping may sometimes be present, depending on particular circumstances,
such as radiative damping. The features of these additional forms of damping will now
be briefly summarised.

The mechanism behind thermal ion Landau damping has already been hinted at.
Since the thermal velocity of the bulk ions is much lower than the phase velocity of
the Alfvén wave, a Maxwellian background plasma will have a negative gradient in
its velocity around the resonance position, and therefore the wave will be subject to
Landau damping.

However, the population of particles with sufficiently high velocity to resonate with
the wave will be correspondingly very small. In the case of a TAE, significant thermal
ion Landau damping is made possible by the modification of the resonance condition
by the magnetic field curvature, which greatly increases the proportion of thermal
particles that can interact. The resonance condition v = v, is supplemented by an
addition resonance at v = v4/3 [16, 17, 18].
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Figure 1.4: Sketch diagram of an artificial continuum, demonstrating peripheral
continuum interaction. Continua are plotted for two poloidal harmonics. A gap
mode can exist where the frequency gradient and thus continuum damping for the
m = 2 mode drops to zero, at radial position r = 0.45. If this mode is sufficiently
radially extended, however, it can interact with the continuum via the m = 1
harmonic near the edge.

Thermal ion Landau damping can be significant in a burning plasma. The strength
of Landau damping and inverse Landau damping naturally depends upon the energy
gradient in the particle distribution function. In projected demonstration reactors,
the total fast particle pressure is expected to be comparable to the thermal plasma
pressure, due to the much higher temperature of the relatively lower density fast particle
population. In current experiments, the thermal plasma pressure is much higher than
the fast particle pressure, such that thermal ion Landau damping is a relatively much
stronger effect than it will be in a reactor.

Radiative damping occurs due to mode conversion from the TAE to a Kinetic Alfvén
Wave through the effect of finite Larmor radius and resistivity [19]. Treating radiative
damping therefore requires the consideration of kinetic and non-ideal effects, and, as
the mode structure is modified, it requires a non-perturbative treatment, in which the
mode structure can evolve over time.

Electron collisional damping is another mechanism predicted by analytical the-
ory [20, 21]. The electron thermal velocity is larger than the ion thermal velocity by
approximately the square root of the mass ratio, which is typically much larger than
the Alfvén velocity. Resonant electrons are therefore deeply trapped, which may be
expected to strongly suppress this route for damping. However, where the electron-
ion collision frequency, v,;, is comparable to the mode frequency, collisional damping
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of trapped electrons can become significant. Numerically it has been problematic to
consider electron collisional damping in detail due to the challenges of gyrokinetic
simulation of electrons.

1.3.3 Non-linear saturation mechanisms

Eigenmode growth is determined by the linear physics. Such perturbations do not
however typically come to dominate the equilibrium magnetic field structure. An
important quantity of merit is the magnitude of the perturbation as a proportion
of the equilibrium magnetic field, ex = 0B/By. Non-linear terms are those which
are second order or greater in the perturbed quantities. As the magntidue of the
perturbation grows, non-linear terms can come to dominate the linear terms. Non-
linear terms therefore control whether, and at what level, an eigenmode will saturate.
Experimental 0 B/ By inferred from plasma displacement in TF'TR have been estimated
at O(1073). In this work we will therefore retain non-linear terms only to the lowest
order.

There are two principal mechanisms for non-linear mode saturation. First, redistri-
bution of fast particles may lead to local flattening of the profiles driving the mode. As
inverse Landau damping drops to zero, the mode ceases to grow. Second, non-linear
coupling of the unstable mode to other, stable modes may provide a sink for the mode
to lose energy that would otherwise contribute to its growth [14].

In general predicting the quanitative behaviour of a system of coupled, non-linearly
interacting modes driven and damped by common thermal and fast particle profiles,
which are in turn affected by the collective behaviour of all the coupled modes, is
beyond the scope of analytical theory and must be addressed numerically. Analytical
models, such as the Berk-Breizman model [22, 23], are nonetheless very effective at
predicting many of the qualitative features observed in experiment.

In the Berk-Breizman model a simple bump-on-tail fast particle population is
posited driving a single mode, and parametises the system’s behaviour in terms of
the linear growth rate of the mode, v, the background damping rate, v4, the bounce
frequency of resonant particles, w;,, and the collisionality of the system, v [24, 25, 26].
It predicts the formation of phase space holes and clumps, which are observed numeri-
cally [27], and frequency chirping which is observed experimentally [28, 29, 30, 31, 32].

Numerical simulation suggests that, with reactor-relevant parameters, bulk plasma
non-linearity contributes to saturation and can reduce the saturation amplitude within
an order of magnitude. These effects can be important in improving quantitative
agreement with experimental measurements. The behaviour of the bulk plasma does
not however determine the saturation [33].

Although numerical simulation is now able to accurately match experimental satu-
ration levels given a parametised damping level [33], it tends to underpredict transport
of fast ions. Quantitative agreement with experiment can be reached assuming an order
of magnitude higher § B/ B, than the observed [34, 35]. How to bridge the gap between
numerical predictions and experimental observation remains an matter of on-going
investigation.
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1.3.4 Fast particles in optimised stellarators

Particles are not confined in general in a non-axisymmetric toroidal magnetic field, such
as that of a stellarator, even in a collisionless regime without anomalous transport. In
particular, there can be a finite radial drift of trapped particles between bounce points.
In order to minimise trapped particle losses, the magnetic geometry can be optimised.
For instance, the geometry can be optimised to minimise geodesic curvature of the field
lines. In the limit of zero geodesic curvature, called an isodynamic plasma, trapped
particle orbits do not drift radially out of the plasma [36].

A more practical choice of optimisation is quasi-isodynamicity. In a quasi-isodynamic
configuration, trapped particles have non-zero drifts but these average to zero when
integrated over time. Although a perfectly quasi-isodynamic configuration cannot be
produced, a very close approximation can be achieved in practice.

Wendelstein 7-X is a quasi-isodynamic stellarator [37], and therefore should ex-
hibit considerably lower fast particle transport than previous, unoptimised stellarators.
However, because perfect quasi-isodynamicity cannot be achieved, the fast particle loss
fraction is still expected to be greater than in a comparable tokamak device. This is
of particular relevance to energetic particles, which have larger orbits than thermal
particles and lower collisionality.

Toroidal Alfvén Eigenmodes are well known to exist in tokamak experiments [38].
They can also exist in stellarators and have been observed experimentally in the mod-
ular stellarator W7-AS [39, 40, 41] and the heliotron Large Helical Device (LHD) [42].
Such modes are anticipated to be present in the optimised stellarator Wendelstein 7-X,
which began operation during the writing of this thesis, and in any reactor based on
the quasi-isodynamic stellarator concept.

Furthermore, a wide array of other gap modes can exist in stellarators, includ-
ing Global Alfvén Eigenmodes (GAEs) and Beta-induced Alfvén Eigenmodes (BAEs)
which are also present in tokamaks, and Mirror-induced Alfvén Eigenmodes (MAEs)
and Helical Alfvén Eigenmodes (HAEs) which are not.

1.4 Other global modes

Alfvén eigenmodes are some of the most practically important and theoretically inter-
esting global modes known to exist in magnetic confinement fusion devices. Moreover,
they are known to be present in both tokamaks and stellarators. They are not, however,
the only global modes with relevance for fusion applications.

Other global modes may be driven by bulk plasma pressure gradients (e.g. in-
terchange modes), bulk plasma current gradients (e.g. the internal kink mode), or
energetic particles (e.g. the fishbone instability, which is closely related to the internal
kink). Bulk plasma gradient-driven modes can usually be treated in a fluid model,
but kinetic effects can modify stability limits. Energetic-particle driven non-Alfvénic
global modes are typically driven by inverse Landau damping, like Alfvénic modes, and
therefore require a kinetic treatment at least of energetic particles.

The internal kink mode is an ideal MHD mode which is driven by a bulk plasma
current gradient. In a toroidal geometry, it also requires a bulk plasma pressure gra-
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dient to be unstable. The instability is present at flux surfaces with integer ¢, and is
generally greater at lower ¢ surfaces. Since optimised stellarators can have negligible
plasma current, they are typically designed such that internal kink modes are stable.
In tokamaks, however, kink stability can limit the operational parameters of a device.
In particular, where the plasma current is highest in the core ¢ can be driven close
to or below 1, giving rise to an internal kink instability or to related m = 1 kink-like
phenomena such as the Sawtooth cycle [43].

The sawtooth cycle is a generic tokamak phenomenon characterised by cyclical rises
followed by sudden crashes in the core density and temperature. It is believed that
drops in resistivity associated with rises in temperature increase the core plasma current
such that the core plasma passes through, or close to, the ¢ = 1 internal kink stability
boundary, which then redistributes plasma causing a sudden reduction in temperature
and density. Kinetic effects can be of interest in kink physics within some parameter
regimes. For instance, an energetic particle population has been shown to stabilise the
Sawtooth cycle [44], which may be important in future large devices such as ITER.
They are also responsible for driving fishbone modes in tokamaks, which have attracted
some interest.

Ballooning modes are driven by bulk plasma pressure gradients. Since current-
driven instabilities are often absent in stellarators, in these cases pressure-driven in-
stabilities limit accessible operational regimes. In the Large Helical Device (LHD)
stellarator in Japan, it has been observed that the plasma is stable at much higher
core ( values than predicted by ideal MHD theory [45]. This may be explicable by
kinetic effects that could be captured by global 3D gyrokinetic simulations. Although
ballooning modes may also be treated in the local limit, only a few local codes are
capable of treating stellarator geometries.

1.5 Review of numerical modelling efforts

Analytical investigation has been able to identify many of the important drive and
damping mechanisms, and device design considerations, discussed above. However,
the analytical approach is generally not able to produce precise quantitative estimates
of the relative strength of different drive and damping mechanisms, saturated per-
turbation levels, particle redistribution resulting from those perturbations, or fluxes
of energy and particles resulting from these mechanisms. This is principally due to
approximations that must be made in the magnetic geometry, choice of distribution
function, and choice of mode numbers. In the case of optimised stellarators the diffi-
culty is still greater, as the magnetic geometry is generally designed numerically and
may be very complicated.

Generally more physically complete models are more limited in other respects as to
the realism with which they can model fast particle physics. Such limitations include
limitation to few or even a single mode, neglection of non-linearity, and restriction to
simplified geometry. This is due to their greater computational expense, lower level of
maturity, and/or unresolved numerical problems.

Highly detailed simulations have been performed with the gyrofluid code GYRO [46],
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considering non-linearly the effects of turbulence interacting with TAEs in the local
limit. These simulations in the flux-tube limit, however, do not take account of the
effect of the global radial extent of TAEs, such as interaction with the continuum far
from the resonant position, and neglect important non-linear effects such as the flat-
tening of fast particle profiles. For this reason, most on-going work is performed using
global codes.

Simulations closest to experiment have been performed with perturbative codes
such as HAGIS, which couples a fixed MHD mode structure with a non-linear kinetic
fast particle model [47, 48, 49]. Gyrokinetically, the code eigenvalue code LIGKA [50]
is perhaps the most advanced, although its numerical approach limits it strictly to
the linear regime. Current efforts seek to couple a mode structure calculated with
LIGKA to the non-linear fast particle kinetic model of HAGIS, which may in due
course become weakly non-perturbative by iteration of the LIGKA mode structure
with updated profiles calculated by HAGIS.

Other perturbative codes include CKA-EUTERPE, CASTOR-K, NOVA-K, CAS3D-
K, AE3D-K and VENUS [51, 52, 53, 54, 55, 56]. All of these codes couple a fixed mode
structure calculated by MHD models of varying complexity and completeness with a
gyrokinetic model for power transfer from fast particles. All have been used to inves-
tigate fast particle physics.

Non-perturbative hybrid codes include HMGC, MEGA and M3D [57, 58, 59]. These
codes solve the same equations as those above, except that the perturbed mode struc-
ture responds self-consistently to the fast particles. An intermediate model treats the
electrons as a fluid, while both the bulk and fast ions are modelled gyrokinetically, an
approach that has been used by the codes GEM and GTC [60, 61].

Fully gyrokinetic models include eigenvalue codes such as LIGKA, discussed previ-
ously, and the similar KIN2DEM [62]. Fully gyrokinetic initial value codes also exist,
including the Particle-In-Cell (PIC) codes NEMORB [63, 64, 65|, GYGLES [66, 67, 68|,
and EUTERPE [69, 70]. These three related codes treat respectively axisymmetric
(NEMORB and GYGLES) and arbitrary 3D geometries (EUTERPE). EUTERPE is
therefore particularly suited to investigating stellarator physics. These fully gyroki-
netic initial value codes can perform fully non-linear simulations; so far non-linear
simulations of the global tearing mode have been published [71]. In addition to the
PIC codes, the Eulerian code GKW has also been successful in simulating the tearing
mode in the linear regime [72], and on-going work is also considering this mode in the
non-linear regime [73].

There are advantages to having a range of such models at one’s disposal. Practically,
it is advantageous to use the least expensive model capable of treating a particular
problem. More complex models can be used for verification purposes. It is also of
interest to compare a single case with varying physical mechanisms considered. In this
way, causality can be demonstrated in a particular physical effect.
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1.6 Status of EUTERPE

Much of the work of this thesis will concern the gyrokinetic code EUTERPE men-
tioned above. EUTERPE is in principle the most physically complete code currently
existing for the investigation of the physics of global modes in magnetic confinement
fusion devices, capable of treating the thermal plasma and energetic species fully gy-
rokinetically, with self-consistent interaction of all species, into the non-linear regime
in arbitrary 3D geometry.

EUTERPE has already been used to address a number of physical problems. Pub-
lished results unrelated to this thesis include simulation of the linear electrostatic and
electromagnetic Ton Temperature Gradient (ITG) instability in stellarators Wendel-
stein 7-X and Large Helical Device (LHD) [74].

Collisional physics has also been treated by the addition of the pitch-angle colli-
sion operator [75]. The collisional version of EUTERPE has been used to investigate
neoclassical transport in Wendelstein 7-X and the stellarator TJ-II [76]. In the latter
case numerical predictions from theory have been directly compared with experimental
measurements [77].

Global mode work includes a contribution to a benchmark of frequency and growth
rate of a Toroidal Alfvén Eigenmode in the linear regime. It has been used for theoret-
ical investigation of the tearing mode in the linear and non-linear regimes [78], in the
course of which work it has been benchmarked with a gyrofluid code in the non-linear
regime [79]. The similar code GYGLES has been used to treat the kinetic physics of the
internal kink mode in a screw pinch [67] among others, including the Toroidal Alfvén
Eigenmode and related Energetic Particle Modes, including continuum effects [66, 68].

In some regimes, however, fully gyrokinetic electromagnetic simulations of global
modes remain challenging, owing to a particularly severe numerical issue called the can-
cellation problem. This problem will be discussed in greater detail in section 3.8. One
motivation for the development of reduced models has been to avoid this cancellation
problem, even at the expense of lesser physical completeness.

Contemporaneously, a method for substantially mitigating this cancellation prob-
lem has been developed by Mishchenko and coworkers [80, 81]. Published proof-of-
principle cases of successful gyrokinetic simulations that were not previously practical
include TAEs in the ‘MHD limit’ (ki p; — 0) in a tokamak, and the electromagnetic
ITG in a stellarator. So far EUTERPE and GYGLES are only codes in which this
method has been fully implemented. It is discussed in section 3.8.2.

One existing reduced model is CKA-EUTERPE [51], a perturbative hybrid code
package similar to NOVA-K, CAS3D-K, AE3D-K and VENUS. In CKA-EUTERPE,
the reduced ideal MHD eigenvalue code CKA produces a fixed mode structure which
is then passed to EUTERPE to calculate the power transfer of another species, which
may be energetic particles, or thermal electrons or ions.

Although this code package naturally sacrifices some physical content, it is very
numerically robust and avoids the cancellation problem, and has been successfully
used not only for benchmarks and proof-of-principle cases, but for the reproduction of
experimental shots in Wendelstein 7-AS [51] and for physics predictions for Wendelstein
7-X and the proposed optimised stellarator reactor HELIAS, using realistic distribution
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functions [82].

1.7 The contribution of this thesis

In this thesis there are three principal original contributions. First, self-consistent fluid-
kinetic hybrid models for the gyrokinetic code EUTERPE have been implemented,
where either the entire bulk plasma or the electrons are treated as a fluid, with other
species treated gyrokinetically. The theoretical model and numerical implementation
of these models, called FLU-EUTERPE, is described.

The code is shown to successfully reproduce the results of more complete and com-
putationally demanding full gyrokinetic models in appropriate limits. It is shown that
the model permits simulations in regimes previously inaccessible to gyrokinetic PIC
codes, such as electromagnetic modes, like the internal kink, in the MHD (k, p; — 0)
limit [83]. These cases are considered with and without gyrokinetic bulk ions. It is
demonstrated that the bulk ion kinetic effects are sometimes qualitatively important in
determining Alfvén mode structure and growth rate. It is further demonstrated that
the fluid-electron hybrid model does not fully reproduce the full gyrokinetic results
where electron kinetic effects are important or where the chosen fluid closures break
down, for instance where there is a significant finite parallel electric field [84].

Second, self-consistent gyrokinetic global non-linear simulations of toroidal Alfvén
eigenmodes have been performed using both the hybrid models and a fully gyrokinetic
model. The hybrid model results lie in close agreement with those obtained using other
similar codes. The fully gyrokinetic results qualitatively validate the hybrid results in
this regime, although quantitative agreement is not obtained due to the absence of ad-
hoc damping mechanisms in the gyrokinetic model. Fully nonlinear gyrokinetic global
simulations of TAEs have not previously been published [85]. In considering the trend
of saturated perturbed magnetic field amplitude versus linear growth rate, a quadratic
relation predicted by analytical theory is observed within a certain range of values,
transitioning to a linear relation at higher linear growth rate.

The hybrid model has additionally been used to examine gyrokinetic non-linear
wave-wave interaction through the bulk ions in a moderately realistic tokamak case for
the first time, and it has been shown that coupling between TAEs and coupling between
TAEs and the zonal mode reduce the saturated amplitude of the field perturbation.
Mode coupling is shown to be important in determining the physics of even a relatively
simple system.

Finally, electromagnetic global modes have been simulated self-consistently and
gyrokinetically for the first time in the magnetic geometry of the optimised stellarator
Wendelstein 7-X [84], and a successful verification has been performed in the magnetic
geometry of the heliotron LHD. A set of non-linear runs in the optimised stellarator
geometry have been performed with varying linear growth rate, yielding results that
are not inconsistent with previous numerical and analytic predictions in the very high
saturated perturbation amplitude limit.

In combination, these results demonstrate that both the fluid hybrid and fully
gyrokinetic models in the numerical tool EUTERPE can be used for physical inves-
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tigations into the interaction of global modes with fast particles, with sufficient com-
pleteness that predictions of energy and particle transport should be possible. The
importance of gyrokinetic effects in the modelling of bulk ions has also been demon-
strated. The reduced models have limitations which have been partially mapped and
justified.

1.8 OQOutline

This thesis describes the development and exploitation of a code that solves the gyroki-
netic equation for one or more particle species in a magnetised plasma, sometimes in
combination with other equations providing a fluid description of one or more species
in that plasma.

In this, the first chapter, the topic, motivation and structure of the dissertation
have been introduced. The practical justification for interest in magnetic confinement
fusion has been outlined. The basic physics of the confinement of a plasma optimised for
sustaining fusion have been described. More detail has been given of physics relevant
to fast particle interaction with Alfvén eigenmodes, and fast particle behaviour in
optimised stellarators.

In the second chapter, the model equations will be developed, resulting in a gyroki-
netic system of equations from which reduced fluid equations will be derived. Both
systems of equations will be solved by the numerical code EUTERPE. The three key
formulations of the gyrokinetic equations used in this work will be derived and the
differences between them described; all are in principle physically identical but have
different properties for numerical implementation. The fluid model, and its assump-
tions and extensibility, will be discussed.

In the third chapter, the numerical implementation of these equations in the code
EUTERPE will be described. The magnetic geometry will be discussed along with the
numerical scheme used to solve the coupled systems of equations. Particular treatment
will be given of the cancellation problem, which has motivated much of the recent
theoretical development of the numerical structure of the code, including the inclusion
of reduced hybrid models.

In the fourth and fifth chapters, results obtained using the EUTERPE gyrokinetic
and fluid-hybrid numerical models will be presented along with physical interpretation.
The main cases considered will be as follows: an idealised Toroidal Alfvén Eigenmode
benchmark case, called the ITPA TAE case, designed to allow investigation of the
basic physics underlying the TAE in a tokamak in a way that permits good comparison
between various codes; cases in which the internal kink mode is unstable in both screw
pinch and tokamak geometry; and finally a case in which a global mode is driven
unstable by fast particles in realistic Wendelstein 7-X stellarator geometry.

In chapter four these cases will be considered linearly and in chapter five the cases
will be considered again this time with non-linear physics included. In all cases non-
linear physics will enter only the gyrokinetic equations. Non-linear physics can be
further restricted to just the wave-particle non-linear interaction, which as discussed
in section 1.3.3 is usually dominant. Using the fluid-electron hybrid model, bulk ion
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non-linear interaction will additionally be considered.

In the sixth chapter the thesis is concluded, with an extended summary of key
results and discussion of the current status of the code, followed by a brief exposition
of planned future work.
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Chapter 2

Model equations

We consider the non-relativistic dynamics of a fully ionised plasma in the presence of
an electromagnetic field, described by N coupled Lorentz equations for N particles, n:
du, . T
Mn~r = dn (—V¢(r) + U x (V X A(F))) (2.1)
where m,, is the particle mass, 7, is the particle velocity, ¢, is the particle charge,
and ¢ and A are respectively the electrostatic and magnetic potentials, given by the
equations,
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Since N in a viable fusion device will be greater than 1 x 10?2, this system of
equations is intractable in practice. It is therefore necessary to solve reduced systems
of equations. In this work, two approaches will be used. The first and most complete
is the gyrokinetic approach, in which the microscopic behaviour of individual particles
is considered statistically, with appropriate asymptotic expansion taken to isolate the
most relevant timescale. In the second, the fluid approach, the plasma is described
by averaged macroscopic parameters. Since the fluid picture is a limiting case of the
(gyro)kinetic picture, the fluid equations will be derived from the gyrokinetic equations.

2.1 Gyrokinetics

The gyrokinetic description of a plasma is an asymptotic case of the kinetic description.
In the kinetic description, a distribution function is posited, f(Z,, f), describing the
expected number of particles occupying any given position Z and velocity ¢ at time t.
It follows, then, that integrating over all velocity space gives the particle density at a
given position,

/f@ﬁ@fv:m@o, (2.4)
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where n is the physical density, while integrating over all position and velocity space
gives the total number of particles in the system, N,

/f Z, 0, )d*rd*v = N. (2.5)

In order to obtain an equation for the distribution function, f(Z,v,t), we need to
impose some constraint on the system determined by the physics. In this case, the
distribution function must obey a continuity equation, as in non-relativistic dynamics
the particle number within phase space must be conserved.

The most general such equation neglecting correlations is the Maxwell-Boltzmann
equation,

%IH% Vf+ S( Vo+TxVxA)- gi
where S is a source term and C' is a collision operator. In this work, sources and
sinks will be neglected. In the gyrokinetic description, collisions will also be neglected.
The assumption of a collisionless plasma is justified in a high temperature fully ionised
plasma, such as in the core of a magnetic confinement fusion device, as the collision
cross-section scales with temperature as v ~ T73/2. A simple model for resistivity,
which may model collisional effects, will be considered in the fluid description. This
will be considered as an ad-hoc contribution and not be derived from the gyrokinetic
equations.

With the source and sink terms set to zero, we obtain the Vlasov kinetic equation,
which is the foundation of our derivation,

of n Of
8t+R Vf+ms( Vo+1xV xA)- 75 =0. (2.7)

The Vlasov kinetic equation must be solved for the distribution function in six
phase space coordinates (three space and three velocity) and time. Since it is often not
necessary to resolve plasma behaviour on timescales shorter than the gyrofrequency,
however, the equation can be simplified by decoupling the gyromotion, moving to a
coordinate system in which the gyroangle is constant given some asymptotic expansion.
This is the essence of gyrokinetics.

Mathematically, then, we can say that gyrokinetics is valid in the parameter regime,

C(f(Z,0,t)+S(Z,0,t) (2.6)

Q% ~ €, (2.8)
where w is the characteristic frequency of the physical phenomenon of interest, €2, is the
gyrotron frequency, and € < 1 is a small parameter. This ordering expresses that the
phenomenon of interest takes place on a much longer time scale than the gyromotion.

It is also necessary that the characteristic scale length of the gradients is greater
than the gyroradius; otherwise, the particle dynamics vary significantly within the
course of its gyromotion, and it is no longer valid to consider the guiding centre motion
separately to the gyromotion,

~ €BTn, 2.9
Lern BT (2:9)
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where Lp 1, are the background magnetic, temperature and density scale lengths. As a
corollary, the fluctuating fields must have a small amplitude relative to the background
fields, as otherwise the fluctuations could result in significantly differing dynamics over
the course of a gyro-orbit,

T ~ €§. (210)

The gradients of the fluctuations may, however, be of the same order as the background
gradients.

In the following section we will describe the derivation of the gyrokinetic equa-
tions that are solved in the course of this work. Traditionally, gyrokinetic equations
have been derived by performing a perturbation expansion in a small parameter and
averaging over the fast gyromotion [86].

Here, however, equations will be derived by performing a transformation from par-
ticle to gyrocentre phase space coordinates in which the motion of the gyrocentres does
not depend upon the gyroangle. This procedure decouples the fast gyromotion from
the slower reduced gyrocentre motion [87].

This approach has the advantage of producing equations that automatically con-
serve energy and momentum to the desired order. In this work, however, an additional
significance is the ease with which the method can be used to derive systems of equa-
tions in coordinate systems which have very different numerical properties. These will
be derived and detailed.

2.1.1 Kinetic system of equations

We start with the Vlasov equation in its general form,

Of i of _
5 T4 @A) =

0, (2.11)

where Z* are general phase space co-ordinates.

Since the equations of motion, Z (¢, A))), depend in general upon the perturbed po-
tentials, equations for these potentials are also necessary. The dynamics of electromag-
netic potentials are determined by Maxwell’s equations. For the perturbed magnetic
potential, we take Ampére’s law, neglecting the displacement current and the perpen-
dicular component of the perturbed magnetic potential, A, which is always neglected
in this work,

V x B = o, (2.12)

which in terms of perturbed quantities is,
po (S + Jjie) = =VIA). (2.13)

This equation relates the magnetic potential to the parallel current, which can be
calculated from moments of the distribution function.

We work here in the Coulomb guage, i.e. V - A =0. The approximation A ~ A
that has been made here is justifiable when considering modes, such as the Toroidal
Alfvén eigenmode, and the kink mode, where the parallel length scale is much greater
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than the perpendicular length scale, k; < kj. Where 8 ~ O(1), however, the effect of
compressional magnetic field perturbations must be taken into account. Such gyroki-
netic equations have been derived, for instance in [87], but are not considered in this
work. In the jargon of this thesis, systems in which this approximation Ay < A, is
made are referred to as reduced systems. This applies to both the gyrokinetic and the
fluid equations.

An equation is also needed for the perturbed electrostatic potential. In a quasi-
neutral plasma, where we are concerned with length scales longer than the Debye
length,

1/2
Ap = (6/%T/Zn056§) ) (2.14)

the total ion and electron densities are approximately the same,
ni — nie = 0, (2.15)

which in the gyrocentre coordinates will give rise to a contribution in terms of ¢ due to
the gyrokinetic polarisation density. This choice of equation is equivalent to assuming
that the contribution to the perturbed electrostatic potential due to the finite Debye
length is small relative to the contribution due to the polarisation density, which is
generally satisfied for plasmas in magnetic confinement fusion devices.

In the above equations the densities and currents are physical quantities, defined
as moments of the distribution function. The density moment is,

ng = / fo(#,0)dv (2.16)

where ng is the total density, and the parallel current moment is,

JHS = QS/U||fs(fa 17)d37}- (217)

Here f(#, ) is the physical distribution function. Its form however changes depend-
ing on specific coordinate system chosen; care must therefore be taken to convert these
equations into whatever final coordinate system is chosen for the Vlasov equation.

2.1.2 Gyrokinetics by variational methods

Having established the system of kinetic equations to be solved, we now proceed to
gyrokinetics. The goal is to derive the Vlasov-Maxwell equations such that the fast
gyromotion is decoupled from the dynamics occuring on the slower timescale of the
background field fluctuations. The method is to arrive at a Lagrangian for a charged
particle in fluctuating electromagnetic fields, such that the magnetic moment is a con-
stant of the motion, f = 0. This corresponds to no dependence of the dynamics on the
gyroangle in our chosen coordinate system. From this Lagrangian, gyrokinetic equa-
tions of motion and gyrokinetic Ampére’s law and Poisson equation (quasi-neutrality)
can then be derived [87].
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To do so we will begin with the Lagrangian for a charged particle in a static, or
background, electromagnetic field. By Lie transformation methods [88], we can shift
this Lagrangian into a coordinate system where the magnetic moment is constant,
introducing the first gyrokinetic ordering parameter eg. This is called the guiding
centre coordinate system. From this could be derived the gyrokinetic Vlasov-Maxwell
equations for test particles subject to prescribed static fields, but we are interested in
phenomena that depend upon electromagnetic field fluctuations.

The coordinate transformation is defined as follows,

il

F(Z)=TF(Z)=F(TZ)=F(Z), 2"=(Rv,1,0),2" = (R,v,1,0), (218
where Z and F are the initial coordinate system and scalar field respectively, and Z
and F the transformed coordinate system and scalar field.

When field fluctuations are added to the guiding centre Lagrangian, however, the
condition £t = 0 is broken. To recover it, a second coordinate transformation is required
based on the second gyrokinetic ordering parameter, €5, to bring the Lagrangian into a
coordinate system such that the magnetic moment is once again constant. This, final,
system is called the gyrocentre coordinate system.

Together, this shift from particle to guiding centre (gc) coordinates and then to gy-
rocentre (gy) coordinations is called the ‘two-step derivation’. It is now an established
method that has been detailed for non-linear gyrokinetics including parallel magnetic
field perturbations in a recent review paper [87]. Here a brief description of the method
and derivation in the appropriate limits for our code will be presented.

We start, then, with a Lagrangian for a charged particle in the presence of static
electric and magnetic fields. This unperturbed extended Lagrangian, f, is as follows,

A

0= (S +7) - dR - wdt - Hdr = Ti(2)dZ' — Hdr (2.19)
c
where I'; is the symplectic one-form and 7 is the Hamiltonian orbit parameter.

The unperturbed extended phase space Hamiltonian, H(Z), is defined and related
to the standard time-dependent Hamiltonian, H(R,t), as follows,

H(Z) = - +ego—w= H(R,t) — w. (2.20)

It can be shown [87] that the Euler-Lagrange equations can then be expressed in a
form that gives the particle dynamics required to solve the kinetic Vlasov equation,

az’ i OH ;

= J 27 = {Z',H}, (2.21)
from which the standard relations for the evolution of the test particle position, velocity,
and field energy could be derived in the full kinetic description. Since we are not
concerned with kinetic test particle simulations in this work, these equations will not
be written explicitly, and we will proceed to gyrokinetics in the presence of static
background fields.
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To do so, we perform a coordinate transformation of the type described in equa-
tion 2.18 such that the unperturbed Lagrangian becomes,

Tyo = — A% - dX + epp()dh — wt, (2.22)
cep e

and the Hamiltonian becomes,
P
Hye = o + pBy —w = Hy. —w, (2.23)
where we have introduced the gyrokinetic ordering for the first time: eg expresses the
requirement that the variation of the background magnetic field, By = V x A, be

small on the length scale of the gyroradius. Here the extended background magnetic
potential is given by the equation,

As= Ay + GB(E)pHE +O(E). (2.24)

This coordinate system is called the guiding centre coordinate system; in the absence
of electromagnetic field perturbations, it is equivalent to the gyrocentre coordinate
system, in which the gyrotron timescale is decoupled from the timescale of the elec-
tromagnetic field fluctuations. For simplicity, the eg terms will be dropped from now
on.

Since we are interested in modes originating from the time-dependent fluctuation
of the electromagnetic fields, we must consider an extended Lagrangian which includes
perturbed electrostatic fields and, at least, perpendicular magnetic field perturbations.
Introducing the notation for this new Lagrangian,

FQC = I-‘Ogc + €5F1gc7 (225>
and Hamiltonian,
ch = %Ogc + 66%1967 (226)
we define the perturbed part of the Lagrangian as
6 - — — —
[ige = EA”‘(X +pt) - d(X + p) (2.27)
e - - S

in the particle and guiding centre coordinates, for which the corresponding perturbed
part of the Hamiltonian is,

Hige = ety (X + 5,t) (2.29)

= egblgc(Xat;HJa C)a (230)

where we have introduced the perturbed guiding centre electrostatic and magnetic
potentials, ¢4 and Ay, for the first time.

Note additionally that another ordering assumption has also entered for the first
time: €5 expresses the requirement that the perturbation amplitudes be small relative to
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the background fields. Both small parameter assumptions of gyrokinetics are therefore
now present in our system of equations.

In this coordinate system, however, the magnetic moment is no longer a constant
of the motion; the fast gyromotion is therefore no longer decoupled from drift motion
on the slow timescale of the field fluctuations. A second coordinate transform of the
Lagrangian is therefore required such that the contribution to the evolution of the
magnetic moment due to the field fluctuations is also constant of the motion. This
coordinate system will be called gyrocentre coordinates.

Performing the coordinate transform, we need to obtain the Hamiltonian from which
we can derive the gyrokinetic equations of motion. The perturbed Lagrangian in the
new system of coordinates is,

- o - e[ = - - > me_ -
P=Ty+1) = [E (Ao + esAyjgy ) + pybo) - dX + = idf — wdt, (2.31)
where the gyrocentre perturbed magnetic potential is,
Aljgy =« <1‘Y1||gc> b. (2.32)

Here « is a Boolean parameter which represents our choice of transformed gyrocentre
coordinate system. The gyroaverage is defined as,

(a) = / %a(ﬁ—l— 7 (2.33)

where a is a general function, 6 is the gyroangle, R is the guiding centre position, and
p is the gyroradius of the particle. Physically, the gyroaverage can be considered as an
integral of z over the ring swept out by the gyromotion of the particle, normalised to
circumference of the ring.

The corresponding Hamiltonian acquires terms at both the first and second orders
in terms of e,

H == -HO + Egﬁl + 6(2;H2, (234)
where the first order Hamiltonian contribution is given by,

GUH

Hy = e (thge) = € ($ge) = — (1 — a) (Aujge) (2.35)

c
and 1), is the guiding centre perturbation potential.

The first order Hamiltonian is sufficient for a linear description. For a rigorously
self-consistent non-linear description, or to derive the Ampére and Poisson equations
by variation methods, the second order contribution to the Hamiltonian must also
be considered [87]. Historically these non-linear terms have not been considered by
EUTERPE or related codes, and the field equations have been derived by pullback
transformation of the distribution function. In the future, however, it is planned to
expand the code treatment to account for the non-linear corrections at second order.
Their absence is not believed to qualitatively affect the results and will not be con-
sidered in this work. Current and future publications contain explicit equations with
these contributions included [87].
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The Jacobian is,

J = mQBr[ = m? (BS‘” + €5 (04 <g1‘|gc>)> . (2.36)
The parameter B|’|k is given by,
Bi=b-Bj (2.37)
where . . . .
Bi =5y V x (A +esAryy ). (2.38)

It is clear, then, that there is more than one set of coordinates which satisfies
the constraint i = 0. Writing the equations of motion in the new gyrocentre coor-
dinate system in terms of the Hamiltonian, it can be seen that there is an explicit
dependence both on the term gyrocentre perturbed parallel magnetic potential Ay,
and the Hamiltonian H, into which information on the choice of coordinate system is
encoded,

—

2 b L
X =2« (VH +es (2.39)

€B||

c0dyy |  0HB
c Ot 817” Bﬁ<7

B* e aA’lllgy
B*

-(?Hﬂgz 5t ) (2.40)
I

From these expressions the equations of motion in each coordinate system can be
calculated.

In this work, three sets of coordinates will be used. These are called the symplectic,
or v|, coordinates, in which o = 1; the canonical momentum, or p; formulation, in
which o = 0; and a third system, combining the properties of both, referred to as
the mixed-variable coordinates, in which two components of A are posited, one being
treated in the manner of the symplectic formulation and the other in the manner of
the canonical momentum formulation.

In terms of the Lagrangian, o = 0 corresponds to a time-independent symplectic
part, with all fluctuating field quantities contained in the Hamiltonian part. Con-
versely a = 1 creates a time dependence in the symplectic part of the Lagrangian,
but eliminates the so-called electron skin terms in Ampéres law, which are numerically
unfavourable for reasons that will be discussed in detail later. In the mixed variables
formulation, part of the perturbed magnetic potential is considered in each part of the
Lagrangian, meaning that the symplectic part is time-dependent in general but the
magnitude of the time dependent terms can be controlled.

The definition of the gyrocentre parallel momentum also depends upon the choice
of coordinate system, as follows,

v ==

. e _
Pl =P+ €~ (Aujge = @Aujge) , - 0= . (2.41)

From this equation it follows that in the symplectic formulation the gyrocentre parallel
momentum is the same as the canonical momentum in the symplectic formulation
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where o = 1, and otherwise not. This is an especially important property as velocity
moments of the distribution function are numerically more simple to implement.

In the following subsections the Vlasov-Maxwell equations will be presented in each
of these coordinate systems. For more complete mathematical details on the derivation,
see [87, 80, 81].

Maxwell’s equations can also be derived directly by variational methods. In this
work, however, we will derive the quasineutrality equation and Ampére’s law by sub-
stituting the transformed distribution function equation into the moment equations
for the two relations in particle coordinates. In particle coordinates, the gyrocentre
distribution function is given by,

F=F+e{S, F}+ 652/11““5- (X + 5, F), (2.42)

where Sy arises from the Lie transform from the guiding centre to the gyrocentre
coordinate system, and is given by the expression,

Sl - _\I/gc- (243)

This equation therefore also depends upon the choice of final gyrocentre coordinate
system. The quantity ¥,. = [ ’ gcdl is calculated using

wgc = wgc - <wgc> 5 (244)

i.e. it represents the fluctuation in the gyrocentre perturbed potential after subtracting
the gyroaveraged quantity.

Finally it is possible by similar methods to prove that this resulting system of
equations satisfies the requirement of energy conservation. This will not be done here.
Numerically energy conservation depends both upon the properties of the model equa-
tions and of the numerical scheme.

In this derivation the equations have been formulated in cgs units. In what follows,
EUTERPE units will be used.

2.1.3 v formulation

The most natural choice of dynamical variables is to express the particle’s position
and parallel velocity, vy, in terms of the parallel velocity in particle coordinates. This
is called the v|-formulation or sympletic formulation. In this case, we the coordinate
selection parameter to be one, a = 1.

In this formulation the equations of motion are as follows,

- . 1 - 0(A)) -
R=ub* + —=bx | VB +q, (v (6) + <8t>b> , (2.45)
|
s . (= 9(A
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=0, 0 = w,, (2.47)

where

é = é +V x AHZ_;. (2.48)

In this formulation alone, the distribution function solved for is the physical distri-
bution function, from which moments can be directly calculated following the equations
in the previous section.

In the delta-f formalism, where f = Fy+ f; with Maxwellian Fj, the quasi-neutrality
equation and Ampére’s law take the forms,

eng ;- engy ,, -
N1 — Nie = — Tio ((P)i — ¢) — Teo ((9)e — 9) (2.49)
and
Ho (j||1i +j||1e) = —viAH- (2.50)
The barred quantities are given by the equations,
_ 1 6 5 o o
@) = [ gz 00 (f+5-7) 251)
no
and .
(A)) = — /jdGZFOS Ny (1% +7- f) (2.52)
o

with Fpys taken to be Maxwellian and where d°Z = dﬁdv”dudé’.

Note that here the equations of motion contain perturbed quantities, such that
the Vlasov equation in terms of f = Fy + f; is non-linear. The equation can also be
linearised, yielding,

dfi = %

Ay ON NOX AN _ RO OFy .10k
ot R

TV S = = — 0 =
I 81}” OR I aU”

(2.53)

where Z(M signifies the full equation of motion, while AS signifies the equation of
motion neglecting perturbed quantities, in terms of A and ¢.

The new terms on the right hand side of the quasi-neutrality equation correspond
to the gyrokinetic polarisation density. This full quasi-neutrality equation above is,
however, not solved numerically in this work. Instead, either the long-wavelength
approximation,

v (‘ﬁ’;ﬁvm) = n; — N, (2.54)
or the Padé approximation,
en
(1—p2V3)(n; —ne) = -V - < T‘Opfvj_gb) (2.55)

is employed. The long-wavelength approximation expands the ion gyroaverage in
Fourier space to order (kyp;)?, and neglects finite Larmor radius effects for electrons.
This is a valid approximation for k,p < 1. The Padé approximation extends the
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range of validity of the approximated quasi-neutrality equation and is generally to be
preferred.

This formulation is advantageous because the distribution function is automatically
in the correct form to be used to calculate physically meaningful moments such as the
perturbed density and velocity in terms of particle coordinates.

2.1.4 p; formulation

In the pj-formulation, or canonical momentum or Hamiltonian formulation, we make
the choice o = 0. The equations of motion are as follows,

= (o-Leap) o+ quWE % (1Y B + V() (2.56)
b=~ (VB + V() - B (2.57)
=0, 0 = w.. (2.58)

Note that the time derivative 0A; /0t is no longer present here. The choice of vari-
ables affects the distribution function, such that moments of the distribution function
taken where v is not the physical v do not necessarily correspond to the physical
density, current, or pressure.

Using these moments, we can derive Ampére’s law and the quasi-neutrality equation
in terms of the symplectic coordinates. These are, respectively,

> %V‘n)s — VA =10 ) s (2.59)

and
€Ny €N —

7 (0)i = 9) = e — 7= ({9)e = 9). (2.60)

The Ampéres law equation now includes new terms, the skin terms, which are
proportional to 3,/p?. These skin terms are numerically complicating and in particular
give rise to the electromagnetic gyrokinetic cancellation problem. This problem will be
discussed in greater detail in section 3.8.

The quasi-neutrality equation in the Hamiltonian formulation given here is the same
as that in the v) formulation. In fact, an additional term enters the magnetisation
vector in the symplectic formulation that would not be present here [87]. However, in
both formulations the magnetisation vector is neglected in this work. Approximated
forms of the quasi-neutrality equation are the same as for the v-formulation.

Ny +

2.1.5 Mixed variables formulation

A ‘mixed’ formulation of the equations of motion will also be used, which combine
the numerical properties of both systems of equations. The numerical advantages of
this concept will be described in greater detail in section 3.8.2, in which the numerical
implementation is discussed.
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In the mixed-variables formulation, developed by Mishchenko and co-workers [80,
81], the p;; and v} formulations are combined to yield the following equations of motion
for the position and parallel velocity,

-

= b ; -
(€0 _ (s) _ M)\ 9y 7
RY = BlT X V<¢ UHA” ?}”A” > m <AH >b (2.61)
- (1) _ q T (h) 3 (s)
’U” = — E |:b . v<¢ - U”AH > + §<A” >:|
ﬂ BX VB (s)
s V<A” > (2.62)

The derivation proceeds as before until, arriving at the perturbed guiding-centre
phase-space Lagrangian,

2

—— TuB+aqo

5 dt, (2.63)

v = gA* . dX + %ude + gAY - dz + ATy - dX

an arbitrary division of the magnetic potential is made into symplectic and Hamiltonian
parts,
A= AP+ A, (2.64)

The subsequent coordinate transformation is performed such that Aﬁs) enters the

symplectic structure and Al(lh) enters the Hamiltonian, yielding the gyrocentre phase-
space Lagrangian,

N mvﬁ

[ =gA* dX + %udé +q(A) - dX — — +uB+ (o - v AM) | dt. (2.65)

The perturbed distribution function is related to that in the symplectic formulation
by the equation,

4:(A[") OFy,
mg aUH ’

e = He = (2.66)
which in turn allows us to derive the form of the gyrokinetic Ampére’s law and quasineu-

trality equations. These are as follows,

i Foi =L _ _
[ B 6~ ) SR+ - )2 = = (2.6)
and 5 5
<p_; + p_; - Vi) A|(|h) - VQLAT\S) = Ho (juu +»7H16) . (2.68)

The pullback transformation to the symplectic distribution function is also neces-
sary in order to calculate physical moments by integrating over the marker quantities,
and will be important in the numerical scheme employed with the mixed variables
formulation, discussed in greater detail in section 3.8.2.
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Note that the Ampére’s law equation retains the collisionless skin terms of the
canonical-momentum formulation, but now they are proportional only to the Hamilto-
nian component of the perturbed magnetic potential, Al(lh)’ not to the total perturbed
magnetic potential, A). This is key to the numerical utility of the scheme and will be
discussed in greater detail in Section 3.8.2. The quasi-neutrality equation is the same
as in both the symplectic and canonical momentum formulations; this should not be

surprising as it is a combination of both formulations.

2.2 Fluid and fluid-hybrid models

In the previous section, macroscopic quantities have already been introduced in the
context of the quasi-neutrality equation and Ampére’s law for a gyrokinetic system of
questions. In this framework, the gyrokinetic Vlasov equation is first solved to yield
a distribution function, and fluid moments are then calculated to in turn calculate
macroscopic electromagnetic field fluctuations.

However, it is also possible to take moments at the stage of the Vlasov equation,
obtaining moment equations which allow one to solve the complete dynamics on a
macroscopic level. As has been discussed in the introduction 1.3.2, depending on
the chosen closures this may lead to the neglect of some important physical effects.
However, there are phenomena which can be adequately treated by fluid models, and
furthermore phenomena for which important gyrokinetic effects do not enter for all
plasma species.

In these cases, a considerable advantage in theoretical and computational simplicity
can be obtained by considering fluid equations derived consistently from the kinetic
formulation, either in isolation or coupled with a gyrokinetic treatment of other species.
This particularly so when considering the electrons as a fluid species. The Courant
condition imposed by the higher electron thermal velocity is relaxed to that of the ion
thermal velocity, while error in calculation of the adiabatic part of the distribution
function is dramatically reduced as it is proportional to the square root of the species
mass (see section 3.8).

Numerically, this method was pioneered with the GEM code [89, 90] and the GTC
code [91]. A derivation based on a small parameter expansion of the gyrokinetic equa-
tions was developed in the course of the latter work [91]. Here, we will present a
standard derivation of an equation for the evolution of the perturbed electron density
from a drift kinetic equation in the symplectic formulation presented in section 2.1.3
by taking a zeroth order moment.

2.2.1 Continuity equation from gyrokinetics

The gyrokinetic code EUTERPE, which will be discussed in greater detail in section 3,
requires the charge and current of each species at each grid point in order to calculate
the potentials needed to solve the gyrokinetic equations. Since the charge on each
species is known, this means the density and flow velocity of each species is required.
Since the gyrokinetic Vlasov equation will not be solved for the electrons, we require a
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fluid equation for the evolution of the perturbed electron density. The perturbed elec-
tron flow velocity can be derived from Ampére’s law given an appropriate momentum
balance equation, which introduces a certain truncation of the physics.

Returning to the gyrokinetic equations from section 2.1.3, we drop the gyroaverages
as the electron Larmor radius is considerably smaller than than the ion Larmor radius.
This yields the drift-kinetic equation. We then integrate this drift kinetic equation
over velocity space to obtain a zeroth order moment equation for the evolution of the
perturbed electron density,

aflgdﬁ—i—/ﬁ-afﬁgdv?’—l—/b%dvg = —/§-6F28d03—/1}|| 8F08dv3, (2.69)
ot OR aUH OR 0

where s = e. Note that we have separated the distribution function, f, = Fos+ f1s into
a background, Fj,, and perturbed, fis, component, for reasons that will be explained
in greater detail in section 3.

We define the first, second, and third velocity moments respectively as,

/f50d317 = Nis, (270)
/ Froud®7 = noupes @2.71)

and . X
/fs(ﬂ)ﬁdgl_f: —I|1s; /fsovid3_’: _Plls- (272)

mg mg

These correspond to equations for the perturbed density, ni,, perturbed parallel flow
velocity, w1, and perturbed pressures, P,. As the equations of motion contain terms
up to quadratic in velocity, all of these terms will appear in the zeroth moment of
the equation kinetic equation. Higher order moments will not appear and we consider
them truncated to zero.

After some algebra, we obtain the following continuity equation, retaining pressure
anisotropy and all non-linear terms,

e - (1) 4 9 ()«

ot B
BxVB P..\ BxVB Pu.\ VxB Pyie
4B V(B)+ 4B V(B T VB )"
B x VB V x B
nleT . ng + nle? . ng +
T U|loe —
no (Vx Ab) - v (S52) + B v (59) +
B x VB V x B
TLOT . V¢+ Mo B2 . V¢
=0. (2.73)

34



In order to make this equation more tractable, we drop non-linear terms and impose
pressure isotropy, Fj;1 = P11 to yield a linearised electron continuity equation,

8”16 |le
ar T noB V(B)+
28 x VB Py, V x B Py,
T () v ()
no (Vx Ayf) -V (“5) + B - v () +
B x VB VXE
My VOt T Ve
-0 (2.74)

One can see at once, then, that this equation, like the drift-kinetic equation, depends
upon the perturbed electrostatic and magnetic potentials. It also depends on the first
and second moments of the drift-kinetic equation, the perturbed parallel electron flow
and the plasma pressure.

It is a known property of fluid equations that each moment will depend upon the
subsequent higher moment, forming an infinite set of coupled equations. Although the
physics of the parallel moment balance, given by the first order moment of the drift-
kinetic equation, may be important enough to consider in greater detail, this series
must eventually be truncated.

2.2.2 Ideal Ohm’s law and advective pressure closure

The simplest closure for the parallel force balance (Ohm’s law) is the ad-hoc ideal MHD
condition,

A
E = _8_t| — V6 =0, (2.75)

This corresponds to the perturbed parallel electric field being approximated as zero.
This can be a good approximation for many physical phenomena of interest, including
the Toroidal Alfvén Eigenmode, ideal internal kink mode, and others. The approxima-
tion is generally not valid where resistive effects or electron inertia would be important.

With the pressure, the model is also truncated. The simplest truncation is to
disregard the perturbed pressure,

Pp =P =0, (2.76)

but this is of course often not sufficient for a good description. One approximation
used in many codes is to postulate that the unperturbed pressure is advected with the

Ex B velocity,

0P 0P,
= o = i VR, (2.77)

which is the ideal MHD pressure equation (entropy conservation) with the assumption
of incompressible flow, V - 7 = 0.
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A fusion device will have a negative gradient in pressure from the core to the edge,
and in a high g plasma this pressure gradient can be the dominant source of free energy
driving instability.

These equations are convenient for easy comparison with other codes, but are none
necessarily the best choices and are not physically complete. Alternative closures will
be considered in subsection 2.2.6.

2.2.3 Reduced MHD bulk plasma, gyrokinetic fast ion model

The above equations are easily applied to produce a further simplified model, in which
the entire bulk plasma is treated as a fluid. Considering that a zeroth order moment can
also be taken of the corresponding drift kinetic equation for the bulk ions, we obtain a
corresponding equation for the evolution of the fluid ion density. This equation differs
only in the sign of the charge and the species mass. Adding the two multiplied by the
respective species charge, we obtain an equation for the evolution of the total perturbed
charge density,

dp  I(n; —ne)
F_ TV e 2.
ot ot (2.78)
_ B.ou(in)_ oy, . VB _VxB
- B.v ( B) (V<) v (B) poi. -~ =~ VP, (2.79)
where .
. b x V.Pl
= 2—. 2.80
v nom.B ( )

Combining with the same closures as previously, we now have a model for the bulk
plasma which can be coupled self-consistently with the gyrokinetic fast ion response.
In this model, the kinetic effects of the entire thermal plasma are neglected, but the
mode structure given by the perturbed fields’ response to the thermal plasma will be
modified by the kinetic effects of a species of energetic fast ions.

2.2.4 Recovery of reduced ideal MHD

The reduced ideal MHD equations can be expressed as a single vorticity equation for
the perturbed electrostatic potential. By solving this equation, the reduced ideal MHD
mode structure, frequency, and growth rate can be calculated.

Starting with the charge density equation obtained above, we substitute Ampére’s
law and the quasineutrality equation,

m;no

~VA3 A = pojip Vi Vio=p, (2.81)
to yield,
8 m;no g ViA” = j||0
— Vo (Vi) - v (T +(Vxap) v (L) + 282
B B
pois - % + % VP =0  (283)
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Taking a time derivative of this equation, and substituting the ideal MHD Ohm’s
law and pressure advection equations,

0A 0P, 0P .
5 =~V i L R (284)
we obtain,
0? m;no g vingb X j”O
()£ (559) - (reina) w(5) - o
VB bxV(#z-VPB) VxB _ | 3
(po B nom.B g Ve VR)| =0 (280)

With the assumption of zero pressure gradient and zero equilibrium current, which
is sufficient to retain the Shear Alfvén wave (SAW), we obtain the following simplified
vorticity equation,

0” ming B Vivié
_Z 0 = =0 2.87
5V (s VL¢)+MOV< — ) , (2.87)
Making the substitution, .
o(r,t) = poe’F T, (2.88)
we derive a relation between the mode frequency w and mode wave number k|,
L, 2
U4

where the Alfvén velocity, vy, is defined as,

B

m. (2'90>

VA =

This is the familiar dispersion relation for the SAW, which is the foundation of many
of the physical phenomena of interest.

2.2.5 Comparison with perturbative code CKA-EUTERPE
The perturbative hybrid code package CKA-EUTERPE [51] calculates a reduced ideal
MHD eigenfunction by solving the equation,

W2V - (izvm) LV [Evi(z?- V)(b} LV {Ev- (ﬂgx w)} (2.91)
V4 B

—v(% [(Z;XV@-Vp} (5><r5)>:O

for the perturbed electrostatic potential, ¢. The curvature tensor, K is defined as
follows,

R=1b Vb= (v x B) % b. (2.92)
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Note that as before the ansatz ¢(s,t) = ¢(s)e” ™! has been applied, eliminating
the time derivative, as CKA is an eigenvalue code solving a time-independent, problem.
CKA therefore yields a reduced ideal MHD real frequency and growth rate in addition
to the time independent mode structure.

The equation to be solved here may be compared with equation 2.87, which should
yield similar solutions. The detailed derivation of this equation also proceeds by taking
moments of the drift-kinetic Vlasov equation, and can be found in [51]. The pressure
and F| truncations employed in CKA are identical to those posited for the fluid-electron
hybrid model.

2.2.6 Non-ideal closures

In addition to the ideal MHD closure, it can be useful to add terms to represent other
physical effects. One, for instance, is resistivity, which can be rigorously modelled by an
energy and momentum-conserving collision operator, but which may be economically
approximated by an additional term in Ohm’s law. A simple model of a collisional
plasma is to posit a finite perturbed parallel electric field proportional to a scalar
resistivity, n: oA

Bl = ——l ~ V¢ = —ViA. (2.93)

Even where resistive physics are not specifically of interest, it is often useful to
include a damping mechanism for numerical stability, a role which can be filled by
a resistivity term. Note that this damping mechanism acts most strongly for large
perpendicular wavenumber k| p;. It is therefore of particular use damping fine scale
structures that may emerge during non-linear simulations.

The resistive term is the only non-ideal closure currently implemented in the code
or considered in this work. So far in this chapter, we have chosen to truncate the
first moment at zero and the second in terms of advection of the background pressure
gradient. This is not strictly consistent, as a complete first moment equation could be
derived in the same way as the continuity equation.

We can treat higher order moments in exactly the same way as we have treated the
zeroth moment. By multiplying the gyrokinetic equation by v and integrating again
over all phase space, we can obtain an equation for the first order moment in terms of
the zeroth and second order moments.

In the limit m, — 0, and taking the first moment of the drift-kinetic equation 2.69,
we find the following Ohm’s law,

i . V(-P”OC - enogb). (294)

B = — . Il
I eng engB

The massless electron approximation is justified for small but finite electron beta,
Bem;/m, > 1, which for a proton-electron plasma requires an electron [ considerably
greater than 0.05%, which is justified in most tokamak experiments. Note that at high
f the assumption of zero By; is violated. A magnetic mirror term (i.e. proportional to
VB) is also present at the same order as these, but can be neglected if it is assumed
that passing particles carry most of the electron current [60].

38



This first order moment equation depends in turn upon the second order moment,
Pi.. Tt can be seen from the structure of the equations that every moment must be
dependent on terms of a higher order. The complete system of fluid moment equations
is therefore infinite, and must be truncated somewhere.

Further extensions are also possible and have been proposed [60] but not considered
in this work. One can for instance include terms for a gyrofluid closure and finite
electron inertia. These possibilities have not been investigated numerically in this
work, but will be briefly discussed for completeness.

In a gyrofluid model an additional term appears, similar in form to the resistive

dissipation term [92],
By =10 ViJje (2.95)

where the collisionless dissipation term 7y, is given by,

ﬁ UVte
i =75 e (2.96)

The combination of gyrokinetic and gyrofluid codes has not been pursued significantly
but may be a future area of interest. Gyrofluid codes are used successfully to simulate
both microturbulence [93] and global modes such as Alfvén eigenmodes [94], and could
be expanded by the inclusion of gyrokinetic models for ion species while retaining many
of the same numerical advantages as drift-fluid models.

Finite electron inertia, meanwhile, can be included into the finite parallel force
balance equation (Ohm’s law) in the simple form,

aque
ot ’

NoMe (2.97)
although numerical implementation with an explicit scheme may be more challenging.
Finite electron inertia is not considered in the frame of this work with the fluid and
fluid hybrid models. With the exception of resisitivity, these closures represent possible
future directions for expansion of the code.
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Chapter 3

Numerical implementation

This work concerns the numerical simulation of physical systems. In the previous chap-
ters, the problems of interest have concisely summarised and the mathematical models
we will use to treat them have been derived and their key properties described. In this
section, the numerical approach to solving these model equations will be explored in
detail.

The principal numerical tool is the gyrokinetic code EUTERPE, developed first at
EPFL Lausanne [95] and later at IPP Greifswald [96]. First, the code will be described
in overview, with its numerical methods, capabilities, and limiations. Second, the
importance of the ‘cancellation problem’ will be discussed, along with the methods
used to mitigate it in EUTERPE. Avoiding and/or mitigating this numerical problem
has been a key motivator of this work. Finally, the implementation of the hybrid
models described in section 2.2 will be described.

3.1 EUTERPE code overview

EUTERPE is an initial-value solver for the non-linear, electromagnetic gyrokinetic
equations described in section 2 for up to three particle species in arbitrary 3D magnetic
geometry. It employs the well-known particle-in-cell (PIC) method.

In the PIC method, large numbers of physical particles are abstracted by a smaller
number of representative numerical ‘super-particles’, referred to here as markers. A
separate marker species is employed for each physical species, defined by a mass and
charge. The PIC method can be regarded as a method of combining the properties of
Eulerian and Monte Carlo approaches for solving partial differential equations numeri-
cally, in which the dimensionality of the problem is reduced by replacing a 2D grid for
the velocity space with markers.

The drawback of this approach is that it introduces the Monte Carlo error scaling
proportional to 1/ V/N. The resulting numerical noise has been a significant issue for
PIC codes. It has not always been possible to accurately distinguish physical effects
from artefacts of noise [97]. In EUTERPE, the ‘delta f* method is used to mitigate
this problem.

The markers discretise the distribution function for each species. Characteristics of
the markers are traced in continuous phase space by solving the gyrokinetic equations of
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Figure 3.1: Flow chart illustration of the PIC method. The markers are moved
according to characteristic equations depending on the perturbed potentials, ¢ and
Aj. The position and velocity of the markers is then used to calculate the charge
and current density at each grid point. The quasi-neutrality equation and Ampéres
law is then solved at each grid point to yield potential values at each grid point.
The potentials acting on each particle are then interpolated and summed from the
nearby grid points.

motion. These equations of motion in turn depend upon the electrostatic and magnetic
potentials potentials, ¢ and A, which are taken from a fixed Eulerian grid.

Having evolved the markers along the characteristics to calculate their positions
and velocities at a subsequent timestep, moments are taken to accumulate the charge
and current at each grid position. From these charges and currents for each species,
matrix equations for Ampére’s law and the quasi-neutrality equation are then solved
to calculate the self-consistent electrostatic and magnetic potentials.

Iterating these steps, it is possible to calculate the potentials and moments at any
later timestep, subject to limitations of accumulating numerical error. A schematic of
the EUTERPE code is shown in figure 3.1.

EUTERPE can solve either gyrokinetic or drift kinetic equations, that is it can solve
these equations assuming a physical Larmor radius or zero Larmor radius. The Larmor
radius enters by assigning charge and current from an average of those markers on a ring
of the Larmor radius, within the precision of the grid, and subsequently accumulating
potentials averaged over their values at different positions on such a ring.
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3.1.1 Gyrokinetic solver

EUTERPE solves the non-linear gyrokinetic Vlasov equation,

dfs 0fs 5 Ofs  .0fs
dt Ot 1 aé+“8u

~0. (3.1)

Like many gyrokinetic codes, EUTERPE employs the ‘delta f” method to reduce
noise. In this approach, the code splits the distribution function into perturbed and
background parts,

fs:F05+f157 (32)

and solves for perturbations in the fields and distribution functions, f,1, as against an
assumed static background, Fj;.

In this work the static background Fy will always be taken to be Maxwellian.
Although a fusion plasma is not necessarily in equilibrium, the background plasma
evolves on a timescale much longer than that of the instabilities we consider, and so we
can approximate the background plasma as being a static equilibrium. In specifying the
background distribution function, the perpendicular velocity v, is used as a variable
in place of the magnetic moment, .

Substituting the split distribution function in equation 3.2 into the Vlasov equa-
tion 3.1, we obtain an equation in terms of the perturbed and background components
of the distribution function,

dfs o dFOs dfls

a -~ dat Tt (3:3)
dfs 0Fys 5 0Fy . OFys . 0Fys 0Ofis 3 O0fis . Ofis  .0fis
i: 0 +R- 0 + 0 + v 0+ S + R- fl + 9 h + fi =0
dt ot oR v ovy ot oR oy ou

dFy. /dt dfy./dt
(3.4)

The superscripts (0) and (1) are now introduced for the equations of motion, sig-
nifying those components independent of and dependent on the perturbed potentials
respectively. Note that in all formulations of the equations of motion, pu is constant to
the relevant order.

In all cases the sum of the purely linear contributions, proportinal to Z© . Fy,,
are set to zero. It is always possible to choose a distribution function Fp, such that
this is true for an axisymmetric geometry. Although this does not necessarily hold
for stellarators, in general we are interested in timescales much shorter than those on
which the background distribution function would change.

We therefore solve the equations,

8fls +R" 8fls _|_U”afls _ _R’(l) . aFO — |
ot OR 321” oR

where linear and non-linear terms are both retained in the equations of motion on the
left hand side. For linear simulations, these are omitted, so that the equations solved
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are,

afls . % _ 5 aFWOS aFbs . (1) a-FOS

Ohs | o) R . =2 — ! — : (3.6)

ot aﬁ 8v|| aR’ 8v|| + ov |

The equation for the time derivative of the perpendicular velocity is,

dv, _ d 2B,u 2u 1 2,
_ “VB-R= +VB. .
dt o dt mB QV h= V R (37)

which allows us to eliminate the explicit dependence on this variable.
At this point it is possible to write an equation for the evolution of the perturbed

distribution function in terms of known quantities. This is as follows,
dfls o _R’(l) 817053 aFbs 81705

= — ——~VB- R
dt aé U” (%“ + QBV aUJ_

= sW, (3.8)

The perturbed distribution function is discretised in terms of markers. It is defined
as follows,

fis (B, vy, p1st) Z w, (£)<6(R — R,)S (0] — 6))3(fi — i), (3.9)

where N, is the number of markers, w is the weight of a marker, which quantifies
the proportion of physical particles that are represented by that marker, and J is the
Jacobian in the relevant coordinate system.

Substituting equation 3.9 into equation 3.8, and integrating over a phase space
volume (2, centred on the marker, gives an equation for the evolution of the marker
weights,

1 7 2 ) = F)a(T = )37 — ) =~ / P=TSO(Ri(t), 1) (3.10)

P
which, upon performing the integral, gives the simplified relation,

FoQ, | &
W, = —SWQ, = — R[ hp {Rl
p

VFOS 10 . (1) 1 0F05 R(l \Va:, 1 GFOS (311>
Foo I T, av” 2B Fos vy
The equations of motion, R and v, where are necessary to solve this set of equations,
are different depending upon the formulation chosen, and are shown in section 2.1. Note
that, depending upon the chosen formulation, v does not necessarily correspond to
the physical velocity of the particle; referring to equation 2.41, we can see that this
correspondence holds in the symplectic formulation but not in the canonical momentum
or mixed variables formulations.
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3.1.2 Distribution functions

The Maxwellian unperturbed distribution function, Fy, is defined as,

v 402
Fy, = 7105_(50)@@ <_M>7 (3.12)

(2m)2/2 0, 205,

where vy, s is the thermal velocity of each species,

TS(SO)
Uth,s<30> = m—s (313)
Note that the phase space variable v has been used to characterise the Maxwellian
distribution function.

Although not used in this work, other distribution functions are also included in
the EUTERPE code. These are especially suited for modelling energetic particle pop-
ulations, which are often not in thermal equilibrium. Two such distribution functions
are the slowing down, and triple slowing down distribution functions. These attempt
to model the collision of a beam of particles produced at a given velocity with the
thermal plasma.

The slowing down distribution is a simple model of such an interaction between an
energetic particle beam and a thermal plasma. It is given by the equations,

N

Fos =n(r) ———
o ()/Ugrit+1)3

Fpe =0 (3.14)

where the constant, N, is given by

Vbeam 1 -1
N = <47T/ U23—_|_3d1}> s (315)
0 Uerit v

the critical velocity, v..i;, is given by

3 3y me v3

cri 4 M fast e

(3.16)

and it is assumed that v; < Vpeam < Ve, Where the thermal velocities vy = /2T /m.
The triple slowing down distribution function is a development on this concept
intended to model Neutral Beam Injection (NBI).

3.1.3 Gyrokinetic field equations

Solving the Vlasov equation for each species gives the perturbed distribution function
for each species, depending upon the perturbed potentials. In order to calculate the
perturbed fields at the subsequent timestep, two further equations must be solved, the
quasi-neutrality equation and Ampére’s law,

-V [(Z %p?) VLQS] - Z qsMis (317>

s=i,f s s=i,e,f
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( Z & V2> Ay=po Y s (3.18)

szef s=i,e,f

where d%7 = B*dev”d,udQ defines the phase-space volume, p, = v/msTos/(eB) is the

thermal gyroradius and 55 = ponosTos/ B2 is the EUTERPE-defined ‘partial’ plasma
beta for each species. The polarization density is treated in the long-wavelength approx-
imation. Finite Larmor radius (FLR) effects are neglected for electrons. The zeroth-
order densities of the particle species satisfy the quasineutrality equation ) _gsns =0
with s =i,e, f.

The density and current moments are defined as

Nys = /dﬁZfls §(R+ 7 —7) (3.19)

and
Jlits = Gs /d6ZflsU5(R +p0— ). (3.20)

The fields are discretised on the grid using the finite element method, defining the
potentials as,

Ay(Z,t) Za,, y (3.21)

and

= DA, (), (3.22)
where A, is a tensor product of unidimensional B-splines of order k,
Ay = Bi(r) B, (X) B(¥). (3.23)

B-splines consistently maintain energy and particle conservation.

The complete quasineutrality (long-wavelength approximation) and Ampére’s law
equations given for the p formulation in section 2.1.4 are therefore discretised in terms
of splines as follows,

—/ﬁM@WL(Z%Wm):/wmwmwaﬂu@> (3.24)

[ @it | %4 5 - via) = [aEn@ 0@ @), 65

e %

so that the two equations take the form,

N N,
> MPe =N, S mPa =N, (3.26)
=1 =1
where the matrices are given by the equations,
m; Lo
M = e_g/dajﬁvJ_Al Vi A (3.27)
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Figure 3.2: A depiction of a quadratic B-spline and its first derivative. Note that
the derivatives of B-splines are well-defined functions.

1
Ml(kA) = mi / dfnoAkAl -+ mi / dfnoAkAl + J / VLAk . VLAl. (328)
e i 0

Corresponding equations are required and can be derived simply by the same
method for the v and mixed variables formulations of the equations of motion. For
the hybrid models, a B-spline discretisation will also be required for the continuity
equation used to calculate the electron density fields.

3.2 Finite Larmor radius

The gyroaverage operator,
dg =
2 = / SR+ ) (3.29)

is executed numerically by means of an N-point fixed sum method. The quantity is
averaged over the neighbouring grid points, k, to the value at N, positions on a circle
of radius ps around the marker perpendicular to the magnetic field, as illustrated in
figure 3.3 and given by the equation

(z) ~ Z %z(ﬁ + k). (3.30)

The potentials are calculated by averaging the perturbed densities and currents
along the gyroring, and the perturbed densities and currents are in turn assigned by
averaging over all markers whose gyrorings intersect a given grid point.

The number of points, N., should vary with gyroradius, a large number being
required to accurately average the potentials as the gyroradius grows larger. For gy-
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rokinetic simulations of fast particle interaction with global modes, and hence in most
simulations presented in this work, N. = 32 points are taken.

Figure 3.3: The implementation of the finite Larmor radius in PIC: an average field
influences the particle trajectories based on average sampling over many grid points
lying on the gyroring (left) and the charge and current are assigned from sampling
multiple particles whose gyrorings pass close to it (right).

3.3 Coordinates

The EUTERPE code uses magnetic (PEST) coordinates (s, 6, ¢) for the perturbed
fields ¢ and A, and cylindrical co-ordinates (R, ¢, Z) to calculate the motion of the
markers.

The PEST coordinate system is defined such that the magnetic field lines are
straight. The magnetic field can be expressed in terms of the physical quantities,

B =V x Vx(s) + V¥(s) x V6, (3.31)

where ¢ and 6 are respectively the geometrical toroidal angle and the poloidal angle in
a coordinate system such that the magnetic field lines are straight. 2mwx(s) and 27¥(s)
are the poloidal and toroidal fluxes respectively. The flux label s is the normalised
toroidal flux,

s = T (3.32)
where W, is the label of the last closed flux surface in the toroidal device.

This coordinate system is advantageous because the fast particle movement along
the field lines is substantially simplified by following a straight trajectory. In terms of
the spatial grid, short length scale changes in the direction of the magnetic field lines
do not need to be resolved.
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In EUTERPE, the poloidal angle ¢ is chosen such that it coincides with the angle
in the cylindrical coordinate system.

3.4 Normalisation

The physical quantities in EUTERPE are normalised as follows.
The magnetic field strength is expressed as a ratio of the magnetic field strength
on axis and the temperature as a ratio of the electron temperature at the defined flux

surface, sg,
B, =B(s=0,0=0), T, = T.(s0)- (3.33)

The length scale is defined in terms of the gyroradius for a proton in a plasma with
temperature T, and magnetic field strength B,

VEpTm, (3.34)

" T eIB,

Note that unless s = 0.0 and a hydrogen plasma is being considered, this does not
correspond to the actual ion Larmor radius anywhere in the plasma.
The time scale is defined in terms of the cyclotron frequency,
e| B,
Q, = el ) (3.35)

mp

The velocity is therefore normalised in terms of the two preceding quantities,

kpT,
vy =1 = 4 2 (3.36)

mp

The perturbed electrostatic and magnetic potentials are normalised in terms of the
normalised radius, magnetic field, and temperature,

—_ AH* = T*B*. (337)

The density is defined in terms of the volume averaged ion density,

Nph )
x — Mgy — : 338
n.=n = (3.38)
and consequently the current is normalised as,
Jx = |e|navs. (3.39)
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3.5 Fourier filtering

In order to mitigate noise, reduce the required resolution, and save computational
expense, it is useful to impose a filter in Fourier space that excludes harmonics outside
the range of interest. As EUTERPE considers the full torus, simulations are filtered
in both poloidal and toroidal harmonics, with numbers m and n respectively.

At each timestep, a Fast Fourier Transform (FFT) is performed on the perturbed
potentials after they have been calculated. The desired harmonics are extracted and
an inverse Fourier transform is performed on this filtered group of harmonics. It is
these, filtered, potentials which are then used in the equations of motion to calculate
the motion of the markers.

Specifying the maximum and minimum mode numbers to be included in m and n,
the filtering operation results in the following equations,

Mmazx Nmaz

Wo— > Y ¢(m,n) (3.40)

M=Mmin T=Nmin

Mmax Nmazx

WA = > Y Ay(m,n) (3.41)
where W is the filter operator.

In this example, a rectangular filter is used, but the shape of the filter may be
adapted to the problem, and multiple domains that are not contiguous in poloidal
harmonics may also be selected. One particularly useful filter follows the safety factor
profile for a given range of parallel wave numbers, k|, according to the equation 1.12.
This results in a filter lying diagnonally in harmonic number phase space. This concept
has previously been applied in turbulence simulations but will later be used in non-

linear TAE studies.

3.6 Phase factor transformation

The phase factor transformation is another technique which takes advantage of knowl-
edge of how the mode of interest is localised in terms of poloidal and toroidal Fourier
harmonics m and n. The advantage of this approach is that, instead of calculating all
harmonics up to the maximum and minimum in m and n and then discarding unwanted
components via Fourier filtering, these unwanted components need not be computed
at all.

The phase factor transformation is a numerical technique that permits the sim-
ulation to be shifted in Fourier space. To simulate modes with higher poloidal and
toroidal mode numbers, then, fewer modes in total must be included in the Fourier
filter, and less poloidal and toroidal resolution is therefore required. This method is
particularly useful for high mode number simulations, e.g. of ion temperature gradient-
driven (ITG) turbulence, but has some application also for the simulation of low mode
number global modes.
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For linear simulations, the ansatz
O(5,07,,) = §(s, 07,1, t)e el row) (3.42)

can be made, where ¢ represents the extracted electrostatic potential.

As the phase factor enters the quasi-neutrality and Ampére’s law equations, it is
fixed in the calculation of the matrices at the beginning of the simulation, requiring
additional terms.

An important practical limitation of the current implementation is that the tech-
nique is only available for linear simulations. Non-linear simulations will therefore often
require greater toroidal resolution with consequent increase in computational expense.

3.7 Plasma equilibrium

EUTERPE calculates the evolution of perturbed quantities on a short timescale. It
does so against a fixed background (unperturbed) magnetic field structure, which can
be considered an initial condition for the magnetic configuration. Physically, large
changes in the magnetic configuration would occur on a timescale that is long in com-
parison to the timescale of simulations of phenomena of interest, so it is justifiable to
rule out such evolution.

The background magnetic field structure is calculated separately and taken by
EUTERPE as an input. Through the unperturbed magnetic field, By, this determines
the magnetic geometry of the simulation. In the both fluid and kinetic models, derived
quantities are calculated from the equilibrium.

In the fluid models, the equilibrium current is calculated from the equilibrium by
the equation,

. 1 =
Jljoe = —V x BO, (3.43)
Ho

on the assumption that the total equilibrium parallel current is dominated by that
carried by the electrons. In the kinetic models, a corresponding calculation is performed
to account for the equilibrium parallel current in the definition of the equilibrium
distribution function.
A plasma is in MHD equilibrium when the magnetic pressure balances the thermal
pressure, that is,
jxB=VP. (3.44)
The equilibria considered in this work have been calculated using the Variational
Moments Equilibrium Code (VMEC). [98, 99] This code calculates a 3-D magnetic

equilibrium by minimising the MHD energy functional,

1
W:/ (—32+p) -dV. (3.45)
Qp 210

The VMEC code assumes that the magnetic field lines form nested flux surfaces,
which is not the case for stellarators in general. It can, however, be an acceptable
approximation in the case where the size of magnetic islands is small.
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To calculate an equilibrium in fixed boundary mode, VMEC takes a definition of
the position edge of the plasma, a peak magnetic field on axis, a safety factor profile,
and a pressure profile. In free boundary mode, a current distribution is defined and
the magnetic field generated by that current distribution is calculated from it. The
equilibrium pressure profile is then derived.

VMEC outputs an equilibrium in terms of cylindrical coordinates, R, ¢ and Z,
which are then mapped to PEST coordinates, s, # and ¢. This mapping is performed
by a third separate code, the VM2MAG code.

3.8 Cancellation problem and mitigation

The cancellation problem is a numerical inaccuracy that arises from the choice of co-
ordinate system in which to solve the gyrokinetic system of equations.

In the conventional p formulation of the equations described in the previous section,
the problem can be seen in Ampére’s law,

< Z ﬁ_; - Vi) A= po Z Jlis- (3.46)

s:i,e,f ps S:iaezf

The left-most terms in this equation, the electron and ion skin terms, are unphysical
and arise only because of the co-ordinate system. In the v} formulation, they are not
present. Problematically, in electromagnetic simulations these terms can be very large.
One can see that these terms increase in size with n and 7" and with decreasing m..
They are therefore especially significant when modelling electrons in a high £ plasma.

In this case, the unphysical skin terms can become much larger than the field
quantitity, —V?3 A}, that we wish to calculate. In principle, the adiabatic part of the
perturbed gyrocentre current - jj1s - should cancel this unphysical contribution exactly.
In practice, there will always be numerical error which will therefore be amplified by
this cancellation problem in the calculation of the desired physical quantity.

Mathematically, we can posit an adiabatic part of the distribution function, re-
sponding to Ay,

a €v FOS a non—a
1sd - _ﬁAHv Jis = 1sd + fls <. (3.47)
This implies that
BSA o MOTLOQZA o 6 ad ) -\ -ad
= A = o & Z figv 6 (R — ) = pojifs (3.48)
and therefore
—VIA = Y (3.49)
s=i,e,f

The cancellation problem scales with the size of the adiabatic current in relation to
non-adiabatic current. The electron adiabtic current dominates due to the much lower
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electron mass, so that the problem scales approximately with

Ji O(ﬁe/PzAHO( no4|
e VAAL T me VA

(3.50)

so it can be seen at once that the problem scales with the electron density, ng, and with
1/k*. The ‘MHD-limit’, where k,p; — 0, is therefore particularly challenging. This
regime is important for simulating Alfvén eigenmodes, which often have low k,, and
for non-linear electromagnetic simulations of all kinds, where the zonal mode (k;, = 0)
is often important.

In general, k| is also a function of radial position. Taking the relation for a cylinder,

1 R
e (3.51)

where m is the poloidal mode number and R, is the minor radius, we can see that
the cancellation problem is most severe for m = 0 and, for lower mode numbers, more
severe closer to the edge of the device [100].
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Figure 3.4: The severity of the cancellation problem depends upon the mode number
and radial position of the mode. Depicted here for a cylindrical configuration [100].

Although here the cancellation problem has so far been discussed in relation to

Ampére’s law, it is also present in the quasi-neutrality equation. Splitting this equa-
tion into adiabatic and non-adiabatic parts, we again see that there is an adiabatic
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contribution, this time in the polarisation density,

, Fo.
nod — / A (3.52)
kT,

This contribution has to ‘cancel with zero’. It therefore does not exhibit the same
pathological scalings of the Ampére’s law cancellation problem, but does scale with
V/B/m. and it in any case still presents a problem of high noise to signal ratio in the
presence of statistical error.

3.8.1 Adjustable control variate scheme

A control variate scheme is a generic approach to noise reduction in Monte Carlo
simulation. It exploits correlation between a known quantity and a modelled quantity
in order to reduce error in calculating other, unknown quantities.

The delta-f method is already a control variate scheme, in which the known Maxwellian
background is used to reduce error in calculating the perturbation to that background.
Where the perturbation of the background is small, the delta-f method is very powerful;
without it, simulations of the linear stage of instabilities, where the perturbation of in-
terest is many orders of magnitude smaller than the background, would be prohibitively
computationally demanding. Depending on the saturation level, this consideration may
also apply to non-linear simulations.

A control variate scheme is implemented in EUTERPE to mitigate the cancellation
problem. [101, 102] Let there be two functions, X and Y, which yield unknown and
known values respectively. If the expected value of X then is a, and Y is b, the expected
value of

Z=X+c(Y —b) (3.53)

is also a. The variance of Z, then, is
Var(Z) = Var(X) + ¢*Var(Y) + 2cCov(X,Y). (3.54)

The choice of ¢ that minimises this variance is

Cov(X,Y)
min — ) 3.59
¢ Var(Y) (3:55)
giving a variance of the value estimated by the new function that is lower than that of
the orignal,

_ [Cov(X, V)P

Var(Z) = Var(X) Var(Y)

= (1 - Cor(X,Y)?)Var(X). (3.56)

The degree of reduction in variance therefore depends upon the correlation between
the desired unknown quantity and the known control quantity.
We define X —cY above by introducing a new population of ‘non-adiabatic’ weight,

QUHFOe
kBTe

wpe - Qpe(fle - f|TL1d€) = wpe +Q AH7 (357>

53



however we do not know Aj.
On the B-spline basis, Ampére’s law can be written,

(L+S;+ S.)c = toJyi + podje — Jﬁf@’—i— S.C (3.58)

where L is the Laplacian matrix, S, are the skin terms, JﬁfE is the adiabatic part
of the numerically calculated electron current, and ¢ is the B-spline coefficient vector
corresponding to a a, where A (Z) = > a,A,(Z). Note that here the currents J,
differ from the currents defined earlier in terms of markers in that they have been
interpolated onto the B-spline grid. On the right hand side, the non-adiabatic part of
the current has been expressed in terms of the total current and the adiabatic part.

It is then possible to cancel the skin terms on both sides of the equation, removing

the cancellation problem analytically, to yield,
(L+S; + Jﬁg)gz oy + poJje (3.59)

Solving for ¢ yields Aj.

This vector is calculated in the code using an iterative method, with subsequent
iterations calculating progressively more terms in a series solution, ¢ =) ¢,

The initial value of the vector is calculated by,

& = o (L+ Se + 8™ (i + Jjue) - (3.60)

At each subsequent iteration the approximation is refined by the calculation of
further terms,

& = (L+ 5.+ 8) 7 [(Se - Jji) @] (3:61)

Note that all of the quantities here are either calculated as time-independent matrices,
i.e. they need to be calculated only once in the entire simulation, or they are acquired
via the charge and current interpolation which must be performed anyway. The itera-
tive scheme is therefore computationally efficient. In the simulations presented in this
thesis, four iterations will be used for gyrokinetic simulations, which will all use the
control variate scheme.

Although in principle this method solves the cancellation problem analytically, it
can be shown that the problem still exists in practice in the EUTERPE code [80,
81], albeit strongly mitigated. Depending on the particular numerical properties of a
given set of parameters, it would appear that the iterative scheme does not necessarily
converge. In this case, large error can still be present in the calculation of A in practice.
The minimum criterion for convergence is that the difference between the analytical
skin term and the adiabatic current term be small relative to the other terms,

| (Se—=JfL) / (L+S.+5i)| <1 (3.62)

This imperfect mitigation has provided the impetus for further developments to
minimise this problem, which are used in tandem with the iterative control variate
scheme described here. These methods will be considered in the following section,
and centre on the development of the mixed variables formulation of the equations of
motion already described in section 2.1.5
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3.8.2 Mixed variables scheme

The cancellation problem described above can be eliminated by choosing the v}, formu-
lation of the gyrokinetic equations. Unfortunately this introduces a new problem: the
equations contain a nested time derivative, 0 <A||> /0t, which is numerically difficult to

solve [103]:
R = 1 - 0(A)) -
B=ul + —=bx |uVB +q, (v (6) + <8t>b> , (3.63)
B
. 1 ?* S j* 8 A
B = ——b uvB - L (b LV (4) + <at>)‘ (3.64)

It is, however, possible to make a choice of co-ordinates that intelligently minimises
the cancellation problem without having to solve this nested time derivative, the mixed
variables formulation described in section 2.1.5, with the following equations of motion,

5 g —
n — _ (s) _ )\ 4 gy 7%
R = B|T X V<¢ UHA” ?J”A” > m <AH >b (365)
M4 | (h) 9/ (s
ﬂ gX VB (s)
“wm VA (3.66)

Returning to equation 3.46, we see that we retain both the unphysical skin terms,
and the undesirable nested time derivative. However, note that in the derivation of
these equations the distribution of Aj into AI(IS) and Al(lh) is arbitrary. Because we can

distribute Aj between A|(|h) and A|(|S) arbitrarily, we can gain an additional degree of

freedom. We can posit an equation for AI(IS) so as to eliminate the time derivative and
minimise the skin terms.

One sensible idea for such an equation would be to take the form of the ideal MHD
Ohm’s law, which will closely approximate the total A by Aﬁs) in many cases where
ideal MHD is applicable. As in the fluid system of equations, then,

aA(S) .
8—7|5| +5-Vé=0. (3.67)

Substituting this into the equations of motion, we obtain,

-

= s h q h)\ 7k

RW = B V(6 - AP —val) - LAME (se68)
SO i my 7\ B (h) B ﬁ gX VB ' (s)
ot = -2 {—q (v X b) v<¢> oAl >] " E V<AH > (3.69)

eliminating the time derivative and further simplifying the remaining term.
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This equation moreover provides a good physical ‘guess’ for the total magnetic
potential in certain circumstances, particularly when simulating ideal MHD modes.
This equation is not an approximation and does not truncate the physical content of
the model, but while it is a good guess for the total magnetic potential and skin terms,
multiplied by A‘(‘h) remain small. In practice, the skin terms can be diminished by
several orders of magnitude when simulating, for instance, TAE.

As explained in section 2.1, the distribution function is modified in general when
the equations are transformed into a new coordinate system. The mixed-variables
densities and currents therefore do not necessarily correspond to the physical densities
and currents. The physical (symplectic) distribution function is related to the mixed-
variables distribution function by the equation

(h)
o _ pom , A OF,
ls ls ms Oy

(3.70)

Furthermore the gyrokinetic parallel velocity variable, v, which in the v formula-
tion (symplectic formulation) is the physical v and in the p| formulation (Hamiltonian
formulation) is the canonical momentum, takes the form

m c g* e(gc) € h € ~(s
o =4 Y V (6= (&) dBgo)| + — AP + — A, (3.71)

AP = AP — (AP (3.72)

I
in the mixed-variables formulation. Here vﬁgc) is the perturbed guiding centre velocity.

At each time step, then, we can reassign the magnetic potential such that Aﬁa ) =
Ay, noting that for consistency we must then adjust the distribution function to
correpond to these new potentials. The following operation is performed,

¢-(A") o,

mg aU”

Fistheny = Fistey = Tty + (3.73)
where k is the current time step.

The mixed-variables scheme has benchmarked against existing linear gyrokinetic
cases, and has been shown to reproduce the existing linear results in all cases, poten-
tially greatly reducing the resolution requirement, depending on the severity of the
cancellation problem in each case. In cases where the cancellation problem is particu-
larly severe, such as the simulation of ITG in stellarator geometry or the most extreme
cases in the k; — 0 regime, such as low harmonic TAE modes, the mixed-variables
scheme permits simulations that were otherwise impossible.

This scheme is valid in the linear regime. In the non-linear regime, however, it has
been shown that there is a small quantitative disagreement between the p; and mixed
variables schemes in some cases, as the equations thus far presented are consistently
ordered only in the linear regime.

A complete non-linear scheme has been derived and will be published in [104],
which includes some algebraically complicated but usually quantitatively small correc-
tions to the equations of motion. These non-linear terms are yet to be implemented
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in EUTERPE, and in this work these equations have not been used, however their
implementation is shortly to be expected. It is not expected that the difference is
qualitatively significant. This question will be investigated in future work.

3.9 Hybrid models

mare
{CKA-EUTERPE) numerically
robust
GK fast ion and economical
power transfer
GK bulk ions and fast ions

fluid electrons
more physically
complete

Figure 3.5: A depiction of the hierarchy of models included in the EUTERPE code
package. The less physically complete models generally require fewer CPU-hours for
a given simulation time, and encounter fewer difficulties with complex geometries.

The major work of this thesis concerns the development and exploitation of the two
intermediate models, labelled together FLU-EUTERPE, which self-consistently solve
for the gyrokinetic evolution of a population of thermal or fast ions, or both, in the
presence of perturbed fields. The most complete couples a gyrokinetic description of
the thermal ions and a fast particle species with a fluid description of the thermal
electrons. The second model self-consistently couples a one-fluid description of the
thermal plasma with a gyrokinetic description of a species of fast particles. These two
models will be detailed in this section.

EUTERPE contains two non-perturbative models, FLU-EUTERPE, and one per-
turbative hybrid model, CKA-EUTERPE. A perturbative model is one in which the
structure of the perturbed potentials does not evolve in response to a gyrokinetic
species. Within the two non-perturbative hybrid models, the physical content can be
altered further by considering, e.g. different fluid closures; this will be developed and
detailed later.

In figure 3.5, the properties of these four basic models are depicted. At the bottom
of the pyramid is the fully gyrokinetic EUTERPE detailed in the previous section.
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Model Self-consistent | GK f | GK i | GK e | £ | Canc. problem
CKA-EUTERPE No Yes No No No | No
Fluid bulk plasma Yes Yes No No No | No
Fluid-electron hybrid | Yes Yes Yes No No | No
EUTERPE Yes Yes Yes Yes Yes | Yes

Table 3.1: A table of comparison for the various models included in EUTERPE. Self-
consistency refers to the perturbed fields’ ability to react to the influence of kinetic
species present. £ refers to the absence of fluid truncation in the Ohm’s law.

This is the most physically complete, but also the most computationally demanding
and complex model, and the only one in which the cancellation problem is present.

At the top of the pyramid, CKA-EUTERPE is the sole perturbative hybrid model
included in the EUTERPE code package. CKA-EUTERPE reads in a mode structure
in perturbed ¢ and Aj from the reduced ideal MHD eigenvalue code CKA. These
prescribed perturbed fields are then applied to the gyrokinetic solver detailed previously
to calculate the particle orbits of an energetic particle population [51].

The main differences between the models are depicted in table 3.1. Physically,
the principal omissions involved in the simplification of the plasma model are the
omission of kinetic effects such as Landau damping and gyroscale effects for some or
all species, the omission of finite £ effects such as resistivity and electron inertia, and
the assumption of negligible modification of the reduced ideal MHD mode structure by
any other mechanism.

Both FLU-EUTERPE non-perturbative hybrid schemes employ the v equations of
motion set out in section 2.1.3, in which there are no electron skin terms in Ampére’s
law and hence the cancellation problem is not present. The time derivative of A is
elimiated by a fluid closure. The control variate scheme is therefore neither required nor
used with the perturbative hybrid schemes. The intrinsic absence of the cancellation
problem is a major advantage of the hybrid approach, eliminating the strong depen-
dence of numerical stability upon £k, p;. The hybrid models are therefore especially well
suited for simulating kinetic interactions with MHD modes.

3.9.1 Numerical scheme

The general numerical scheme for the fluid hybrid models is concisely outlined below.
The fluid equations to be solved will be recapitulated briefly and set in context of their
place in the numerical scheme. The full set of equations and their derivation are set
out in section 2.2.

1. Initial conditions are defined: initial distribution functions, fyx) are required for
any gyrokinetic species that may be present, and initial conditions for the fluid
density, pix) Or niem), the parallel magnetic potential, Aj, and the perturbed
pressure, P, or P, are also required.
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. Taking the distribution functions of the gyrokinetic species, moments are calcu-
lated to yield the perturbed current and density contributions for those species,

NG, )k and Jjg,fk)-

. The perturbed parallel electrostatic potential is calculated from the perturbed
densities using the quasineutrality equation. In the fluid bulk plasma model, this
takes the form,
m;iTyg
-V [ V1iow = pig) (3.74)
Meanwhile the quasi-neutrality equation couples the fluid electrons discretised
by B-splines on the grid to the thermal ions discretised by markers in the case
where they are simulated gyrokinetically,
m;Ng
v 5
. The perturbed parallel magnetic potential is calculated from the perturbed elec-
trostatic potential from Ohm’s law,

Ajerny = f(Dw) (3.76)

. The perturbed fluid parallel velocity is calculated from the currents using Ampére’s
law. In the fluid bulk plasma mode this equation is,

1
Ulte(hi1) = —u0|€,n0ViAn<k+1> (3.77)

Ampére’s law couples the fluid electrons discretised on the grid to the thermal
ions discretised by markers in the case where they are simulated gyrokinetically,

1 .
o (VA1) = i) (3.78)

as the perturbed ion current is represented by markers while the perturbed paral-
lel electron velocity, like the perturbed parallel magnetic potential, is represented
as a field on the grid.

V1w = enir) = eNMie(r): (3.75)

U|te(k+1) =

. The perturbed pressure is then calculated using the pressure truncation,
Preer1y = f(Prery, Po)- (3.79)
. The perturbed fluid density is then calculated at the next time step using the
continuity equation,

Net1) = f gy Ay Py Pr)- (3.80)

If present, the perturbed GK distribution functions are calculated by solving the
gyrokinetic equation(s).

Steps 2.-7. are then iterated.

The output quantities are the distribution functions for all gyrokinetic species, from

which moments can be calculated, the zeroth, first, and second moments of the fluid
species (perturbed density, current and pressure), and the perturbed fields. Higher
order fluid moments are not considered.
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3.10 Diagnostics

In this section the most common diagnostics that will be used in presenting the results
will be described and explained. In the following section, outputs from the various
diagnostics will be shown.

Radial mode structure, poloidal decomposition - The amplitudes of the
perturbed electrostatic and magnetic potentials are plotted, Fourier decomposed
into poloidal harmonics, at each radial plot. This diagnostic is particularly suited
to axisymmetric geometries in which the mode structure is unchanged toroidally
and in which typically only a single toroidal mode number is considered. Where
multiple toroidal modes are important, this diagnostic may be less appropriate.
The perturbation amplitude is taken only at the single toroidal slice where ¢ = 0.

Mode structure in poloidal cross-section - The amplitudes of the perturbed
electrostatic and magnetic potentials are plotted at each radial and poloidal po-
sition in a cross-section through the device taken at a defined toroidal position,
¢ = 0. This diagnostic presents essentially the same information as the previous
but in a different visual form. This form can be more useful if one is interested
in the collective form of multiple poloidal harmonics.

Linear growth rate and frequency - A function is numerically fitted to the
evolution of the amplitudes of the perturbed electrostatic or magnetic potential
decomposed poloidally, to estimate the growth rate and frequency of the evolution
of each poloidal harmonic, assuming a form,

o(t) = cos(wt)e (3.81)

Power spectrum diagnostic - The amplitude of the electrostatic and magnetic
potential integrated in the radial direction is plotted for each combination of
poloidal and toroidal mode number. This diagnostic is important for determining
whether the system is being truncated by the chosen filter. It also shows whether
a single or multiple distinct modes are present in the system.

Magnetic field perturbation - A maximum of the perturbed magnetic field as
a ratio of the equilibrium magnetic field,

ea = 0B/ By (3.82)

is taken over all radial, poloidal and toroidal points. A time series can then
be plotted. This diagnostic is particularly important for non-linear simulations,
where it shows the time of onset of the non-linear phase and the saturated per-
turbed magnetic field amplitude.

Frequency spectrum - The amplitude of the perturbed electrostatic or mag-
netic potential is plotted in frequency bins over a time series. In linear simula-
tions, typically the mode is well localised in frequency. In the saturated phase
of non-linear simulations, this diagnostic yields important information about the
behaviour of the system, such as the presence of frequency chirping.
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e Power transfer The power transfer is calculated by

aw - 5

—=J-F 3.83
for particles at each position in the phase space v, v;. The power transfer for
each individual marker is then summed over many markers within energy and
pitch angle bins. This diagnostic shows at which energy and pitch angle particles
are resonant with a given mode. As

—

j' E =g <UHEH + Uy - E) , (3.84)

this diagnostic can also decompose the particular drifts responsible for driving or
damping a mode.
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Chapter 4

Linear simulations

In this chapter, the results of linear simulations with the EUTERPE code using all of

the available models will be presented. Particular emphasis is placed upon validating

the applicability of the numerical models available in as wide as possible circumstances.

Limiting parameters include the electron 8 and density, and perpendicular wavenumber

k. p;, with which the cancellation problem scales, and the complexity of the magnetic

geometry particularly in 3D.

In this chapter, only the linearised gyrokinetic Vlasov equation,

Oh | po 00 00h _pay 9B 00k

ot . ﬁ * Ui 81}” 8}3; Ui aU”

(4.1)

will be solved, where RO and UH(O) denote the gyrokinetic equations of motion in
the relevant formulation neglecting those terms proportional to perturbations of the
electrostatic and magnetic fields. The superscript 1 correspondingly denotes the terms
in the equations of motion proportional to the perturbed fields.

First, the fluid-hybrid models will be benchmarked against the most challenging
case investigated using the fully gyrokinetic code at the beginning of this work, a
standard linear TAE benchmark case. Convergence scans will also be performed using
all non-perturbative models, and the performance of the different models compared.

The limits of the fluid models will then be explored with a more complex TAE case
based on this benchmark, in which ion and electron Landau damping, and finite E)
effects are more pronounced. This case will help to delimit the range of applicability
of the new models and give an idea where the physical truncations have relevance.

The extreme £k, p; — 0 limit, and MHD current drive, will then be considered with
simulations of the internal kink mode and the associated m = 1 Energetic Particle
Mode (EPM). As the cancellation problem is most pronounced in this case, it will be
considered only using the hybrid models where the cancellation problem is not present.

Finally, proof of principle simulations of global modes in numerical stellarator equi-
libria will be presented using both gyrokinetic and hybrid models. Outstanding limi-
tations with such simulations will be discussed and future work to address those issues
will be outlined.
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4.1 ITPA TAE benchmark

The International Tokamak Physics Activity (ITPA) Toroidal Alfv’en Eigenmode bench-
mark is a useful verification tool for the new hybrid models of FLU-EUTERPE. It has
been performed by many codes with a range of different numerical implementations,
e.g. initial value and eigenvalue, and physical models, including full gyrokinetic, gy-
rofluid, and MHD-kinetic hybrid. [105] Most of these codes have been discussed in
section 1.5.

The physical parameters chosen are a large aspect ratio tokamak with major radios,
Ry = 10.0 m and minor radius, @ = 1.0 m. The magnetic field strength on-axis is 3.0 T.
A low shear analytical safety factor profile is chosen with the form,

q(r) = 1.71 4 0.16(r /a). (4.2)

The bulk ion and electron temperature profiles are flat, with absolute values T; = T, =

1 keV. The bulk ion density profile is flat with an absolute value of 2 x 10! m~3.
The Alfvén continuum corresponding to the equilibrium parameters described above

is depicted in figure 4.1. Note that, in this frequency range, there is a single gap

associated with poloidal and toroidal harmonics n = —6 and m = 10, 11.
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Figure 4.1: Above: the continuum for the ITPA TAE tokamak benchmark case.

Below: the safety factor (left) and fast particle density profiles (right). Both in

terms of r, where with circular flux surfaces s = r2.

The benchmark naturally concerns itself with the TAE associated with this n = —6,
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m = 10,11 gap. The mode is driven by a fast particle population of density ngy =
7.5 x 10' m—3 and profile,

0y (r) = nosexp (—;tanh <T 885» | (4.3)

The peak density gradient therefore coincides with the expected central location of the
TAE, in the gap.

The distribution function is Maxwellian with a temperature varied up to 800keV.
One limit to the numerical performance of different codes is how close to marginal
stability they can simulate such modes. Self-consistent initial value codes are generally
more problematic in this respect, as a weakly driven mode must be given time to form
against an arbitrary initialised background. Such problems can be somewhat alleviated
by careful consideration of the mode initialisation.

Numerically, each gyrokinetic species is discretised with N = 10°® markers. The
number of grid points is ny, = 80 in the radial direction, n, = 64 in the poloidal
direction, and n4s = 1 in the toroidal direction. Using the phase factor transform,
the Fourier filter can be centred on the mode, at m = 10, n = —6. Four lower and
higher number poloidal harmonics are also included in the Fourier filter. As there is no
toroidal coupling, no additional toroidal harmonics are considered. The fluid-electron
hybrid fully gyrokinetic (mixed variables formulation) models are used; gyrokinetic
bulk ion physics in the fluid formulation are not significant.

The two quantities for comparison in this benchmark are the mode frequency and
the linear growth rate. The mode frequency is modified by the fast particle population,
but a TAE should remain within the gap or it will become subject to continuum
damping. A mode that resides outside the gap is generally an EPM, and would not
exist without the presence of fast particles. An EPM is generally only possible at high
fast particle 5 [106].
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Figure 4.2: Growth rate (left) and frequency (right) of the ITPA TAE benchmark
compared for three models of increasing completeness. Some divergence is seen
between the perturbative and non-perturbative models, but both non-perturbative
models yield almost identical results. The position of the Toroidicity gap is marked
in black in the frequency plot.
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The linear growth rate should increase with fast particle temperature until Finite
Orbit Width (FOW) and Finite Larmor Radius (FLR) effects begin to damp the mode,
as the fast particle Larmor radius becomes significant in comparison with the size of
the device. This occurs as the orbit and FLR effects tend to average the potentials
experienced by the particles over a greater part of the plasma volume, weakening the
perceived gradients.

In figure 4.2 the mode frequency and linear growth rates are depicted for the four
models included in the EUTERPE code package. The expected trends in frequency
and linear growth rate are seen with all models and are consistent with a TAE mode
that does not at any stage become an EPM.

Quantitatively, all four models show good agreement; the self-consistent hybrid and
the fully gyrokinetic models in particular show almost exact agreement. There is some
discrepancy in frequency between the fluid-electron hybrid and the fully gyrokinetic
models. This will be a generic feature of the models, with the fluid-electron hybrid
model consistently showing a somewhat lower frequency, except at very low levels of
fast particle drive. In the fully gyrookinetic model, the inclusion of FLR effects causes
an up-shift in frequency.
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Figure 4.3: The mode structures calculated by, from left to right, CKA-EUTERPE,
FLU-EUTERPE, and EUTERPE. All three models show close agreement, although
the mode structure from the perturbative hybrid model CKA-EUTERPE is notice-
ably narrower. Note that it is calculated externally and fixed.

The mode structures are shown in figure 4.3. The mode structures calculated
self-consistently by the fluid-electron hybrid model and the fully gyrokinetic model
are almost identical in this case. The CKA-EUTERPE mode structure is calculated
entirely by the reduced ideal MHD eigenvalue code CKA, and is somewhat narrower.

In figure 4.5, results for the linear growth rate from all codes included in the ITPA
TAE benchmark are depicted along with those from the fluid-electron hybrid model
and the fully gyrokinetic EUTERPE with mixed variables formulation of the equations
of motion. Omne can see that all models show good qualitative agreement with the
growth rate increasing with fast particle temperature up to a peak and then reducing
as temperature continues to increase above about 500keV. Without FOW, this peak
and decrease in growth rate with temperature does not occur. At lower fast particle
temperatures, the growth rates returned by various codes are more tightly bunched.

All codes in the EUTERPE package return linear growth rate results that fall within
the range of scatter exhibited by the other codes. The two non-perturbative models
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return results that are clustered toward the high end of the range. There are numerous
possible source of discrepancy between codes that may explain the spread in growth
rates. For instance, in different codes the equilibrium is calculated differently. A circu-
lar axisymmetric equilibrum can, for instance, be calculated analytically. EUTERPE
codes, however, use a numerical equilibrium. An additional generic source of discrep-
ancy is that the codes may have used different resolutions. Different codes also have
different discretisation schemes. About the mean value, the linear growth rate varies
by about 25%.

The perturbative code CKA-EUTERPE returns linear growth rates close to the
middle of the spread. It is possible, then, that mode structure and mode frequency
modification may have some influence on the growth rate, as these mechanisms are
absent in CKA-EUTERPE. Comparison of mode structures in figure 4.3, suggests that
this may be due to the reduced width of the mode calculated by CKA, which reduces
the radial domain over which the fast particle gradients can drive the mode. As the
other perturbative code, NOVA-K, returns lower values, it may tentatively be suggested
that perturbative codes consistently calculate lower growth rates than non-perturbative
codes.

The ITPA benchmark activity itself was principally concerned with the change in
the linear mode growth rate and frequency with changing fast particle temperature.
Studies are additionally performed varying the fast particle density at fixed tempera-
ture. In figure 4.4,the results of these studies are presented. The growth rate increases
linearly with the fast particle fraction, where a fast particle fraction of 1.0 corresponds
to the nominal ITPA TAE case fast particle density. The frequency increases slightly
with increasing fast particle fraction, but remains within the TAE gap.
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Figure 4.4: Growth rate (left) and frequency (right) of the ITPA TAE benchmark
for the nominal parameters with Ty = 400keV and varying fast particle density
expressed as a fraction of the nominal density, compared for the fully gyrokinetic
(mixed variables) model and the fluid-electron hybrid model.

The ITPA benchmark credibly establishes the capability of the fluid-electron hybrid
model and the fully gyrokinetic scheme with equations of motion in the mixed variables
formulation to accurately treat the physics of linear Alfvén eigenmodes driven by fast

66

2,5



particles. The numerical parameters and computational requirements are discussed in
greater detail in the following section.
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Figure 4.5: Comparison of the linear growth rate for the ITPA TAE benchmark case
including all involved codes [105], the fluid-electron hybrid model FLU-EUTERPE,
and the fully gyrokinetic EUTERPE with mixed variables scheme. The results are
presented in the limit of zero Larmor radius (left) and with the physical finite Larmor
radius considered (right).

4.2 Convergence studies and computational require-
ments

An important difference between the fully gyrokinetic and the fluid-electron hybrid
models is the required numerical resolution, which is important in determining the
computational requirements of each model. In this section the marker and grid resolu-
tion will be investigated using the ITPA TAE case. Although in general it is necessary
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to perform convergence studies for each new case, the ITPA TAE case will illustrate
some broad differences in performance between the two models.

First we consider the marker resolution required to converge on an accurate mode
frequency and growth rate. We take the nominal ITPA parameters with 7y = 400 keV.
We take, as before, the number of radial grid points ny = 80, poloidal grid points
n, = 64 and toroidal grid points ng = 1. Note that the number of markers per grid
cell is also an important figure of merit, here being the number of markers divided by
5,120 total grid points.

In figure 4.6, the variation in frequency and linear growth rate is plotted. It can
immediately be seen that the fluid model, which does not need the markers to resolve
the mode itself, converges to the nominal value almost immediately with a low number
of markers. The resolution in fast particles required to generate the correct growth rate
and frequency modification is small. Note that, as in the previous section, there is a
small discrepancy in the frequency predicted by the two models of about 5x 103 rad s™.

This reduced marker resolution requirement is a significant contributor to the
greater numerical efficiency of the hybrid models. In the fully gyrokinetic code, com-
putational requirement in terms of CPU-hours is approximately proportional to the
number of markers used, with some fixed overhead solving the matrix equations for
the quasi-neutrality equation and Ampéres law. In the fluid-electron hybrid model, this
overhead is somewhat greater as matrix operations must furthermore be performed to
solve the continuity equation. In cases such as here, this fixed overhead can be greater
than the time taken to evolve the marker positions and weights with the required
marker resolution; the duration of a timestep is therefore determined by the matrix
equations and not the marker number.
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Figure 4.6: Growth rate (left) and frequency (right) for the ITPA TAE benchmark
for the nominal parameters with 7y = 400 keV. Only the number of markers is
varied. Note the horizontal lines in the frequency plot indicating the position of the
toroidicity gap.

Because solving matrix equations is generally proportionally more computationally
demanding for the hybrid models than for the fully gyrokinetic model, changes in grid
resolution are more significant for the performance of the code. This is because an
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increase in the number of radial or poloidal grid points creates a requirement to solve
larger matrix equations on every CPU.

Fortunately, a large number of grid points is often not necessary when considering
long wavelength global modes. In figure 4.7, the ITPA TAE benchmark case is per-
formed for fixed marker number 10° for all species with a varying radial resolution. One
can see that with both models there is very little divergence in the calculated linear
growth rate and frequency over a large range of values of radial resolution. At very
high radial resolution there is an upward drift in the growth rate shown in the fully
gyrokinetic model, possibly because of the reducing resolution in terms of markers per
cell. Compare with figure 4.6 where reduced total marker number with fixed grid cell
number shows an increase in measured growth rate.

In cases with more complex fine scale structure, there may be a stronger dependence
on radial resolution, however in such cases the advantages of a global over a local
(e.g. flux tube) approach may also be less. The fluid-electron hybrid model exhibits
somewhat less variance in quantitative result with radial resolution than the fully
gyrokinetic model.

120 T T T T T T 1 E ' ' L '
480;’ oo fluid-electron hybrid
100E o 4 fluid-electron hybrid E 460 oo gyrokinetic-mixed variables
T 80%— = gyrokinetic, mixed variables _*U, ---------------------------------------------------
g | B0p
"’L 60 Fo
S e $ s 1 2420F 0T -~ o . .
X 40F 1% - ) )
= { ~ 400
20F 3
| 380
3264 128 256 32 64 128 256
N, (grid points) N (grid points)

Figure 4.7: Growth rate (left) and frequency (right) for the ITPA TAE benchmark
case for the nominal parameters with 7y = 400 keV. Only the number of radial grid
points is varied. The marker number here is fixed at 105. The horizontal lines in
the frequency plot once again indicate the position of the toroidicity gap.

The computational requirements of each model vary significantly. A simple com-
parison is shown in table 4.1, where the radial resolution s = 80 is used in every case.
One can see at once that the reduced models converge at much lower resolution. In
this case the simpler models show a clear superiority over the more complete models,
being physically sufficient and computationally inexpensive.

Considerations such as the differing degree to which different models are dependent
upon matrix operations, which are parallelised only by domain decomposition of the
grid, and marker operations, which are additionally parallelised within each domain by
grid clones, can affect the optimally efficient numerical setup.

For instance, in a fluid-electron hybrid simulation dominated by the matrix solve
time, it is more efficient in terms of CPU-hours to run the code on a number of CPUs
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Model Markers | Timestep | CPU-hours (10°Q_ ")
Fluid bulk plasma 2x10° 10.0 12.8

Fluid-electron hybrid | 2x10° 10.0 18

EUTERPE (p)) 3x107 | 0.75 79,076

EUTERPE (mixed) | 3x10° 10.0 256

Table 4.1: A table depicting the computational requirements of each model for the
ITPA TAE case with nominal parameters to reach an ‘end time’ of 10° Q_!, at which
all the properties of interest of the mode are well established and can by diagnosed
with good accuracy. Note that this time was not reached with any set of parameters
for the fully gyrokinetic model in the p; formulation and the CPU-hour requirement is
extrapolated assuming it would do so with the smallest number of markers and largest

time step able to produce a diagnosable result.

equal to the number of decomposed domains. In a fully gyrokinetic simulation dom-
inated by the time required to calculate marker quantities, the code scales very well
with additional CPUs into the thousands or tens of thousands regardless of the number
of decomposed domains [107].

It can be seen that the mixed variables formulation of the equations of motion
dramatically increases the efficiency of fully gyrokinetic simulations. Not only is the
minimum marker resolution reduced by an about an order of magnitude, but the work-
able timestep is increased by around an order of magnitude. The fully gyrokinetic
treatment is nonetheless still around one order of magnitude more expensive than the
fluid-electron hybrid approach.

Note that in the case of the fully gyrokinetic EUTERPE in the p; formulation,
the simulations failed in all tested cases up to maximum 10® markers before reaching
t = 100000 ;. With 10° markers the simulation successfully reached ¢t = 5000 Q!
having simulated only one complete mode period. With 107 markers the simulation
reached ¢ = 16000 Q. ! and completed seven mode periods, while 10® markers showed
no significant improvement over 107.

This comparison therefore understates the improvement in performance of fully
gyrokinetic simulations in this case due to the mixed variables formulation. This im-
provement will not be so large in cases where the cancellation problem is small, either
for geometrical reasons or because of low electron 3, and may not be large in cases
where the evolution of the perturbed magnetic potential deviates significantly from
that dictated by an ideal MHD Ohm’s law. The latter restriction may be possible to
overcome by adapting the scheme [80].

4.3 TAE-continuum interaction

Having investigated a case in which all the models are broadly sufficient, it is interesting
to proceed to cases where one or several of them break down. Building upon the well-
understood ITPA benchmark case, it is possible to better differentiate the models with

70



only a small increase in physical complexity.

Keeping all other equilibrium parameters the same, we increase the magnetic shear
such that the safety factor profile is now given by ¢(r) = 1.5+ (r/a)?. This results in a
significantly more complex continuum. The two continua are depicted in figure 4.8 [105,
68]. It should also be noted that the steeper safety factor profile is much closer to that
seen in present-day tokamak experiments than that used for the ITPA benchmark.
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Figure 4.8: Continua compared: the ITPA TAE case (left) and the high shear case
(right). Note that in the high shear case the gaps are spaced such that a global

mode residing in one gap can touch the continuum at the radial position of the
others [105, 68].

In addition to the safety factor profile, the background temperatures are also of
importance. In this case, higher background temperature can increase the significance
of Landau damping by the thermal plasma. Keeping all other bulk plasma parameters
the same, the bulk temperature is increased to 9 keV. In this case, the mode frequency
is also shifted upwards sufficiently that the mode begins to interact with the continuum.
The fast particle parameters are the same as previously.

An important feature of this case is that a mode centred just below the central
gap, where one would expect damping to be weakest and therefore the strongest grow-
ing mode to exist, will interact with the continuum via the other harmonics if it is
sufficiently radially extended. This therefore leads to important continuum damping
effects being present even for a gap mode, as discussed in section 1.3.2.

Considering the results, in this case there is a clear difference in observed mode
structure for the three models. In figure 4.9, the calculated mode structures are de-
picted for the two fluid hybrid, and the fully gyrokinetic models [68, 84].

When the mode structure is calculated using the reduced ideal MHD bulk plasma
model, and only the fast particle population is considered gyrokinetically, a series of
six modes, each corresponding to one of the six continuum gaps, is seen. The addition
of a gyrokinetic description of the thermal ions damps these modes. The n = 6,
m = —10,—11 mode is least damped, and forms a global structure with coupling to
side bands located at s = 0.3 and s = 0.65, corresponding to the positions of the other
TAEs. A fully gyrokinetic description does not significantly alter this mode structure,
suggesting that the ion kinetic physics is decisive here.
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Figure 4.9: The mode structure calculated by, from left to right, the MHD-fast par-
ticle hybrid model, the fluid electron hybrid model, and the fully gyrokinetic model.
Note the major change that occurs when thermal ion kinetics are considered. [84]

The quantitative frequency and linear growth rates may also be compared. In fig-
ure 4.10, the maximum growth rate in each case is depicted as the thermal temperature
of the applied fast particle population is veried. It is first of all evident that the max-
imum growth rates calculated by the perturbative and non-perturbative fluid thermal
plasma models are in close agreement with one another.

When gyrokinetic bulk ions are added to the model, the maximum growth rate
increases, although the other modes are damped. A plausible explanation is that the
other modes, which interact more strongly with the continuum, are damped while the
m = —10, —11 mode structure is broadened, increasing the effective proportion of the
fast particle density gradient driving the mode. The fixed mode structure used in
CKA-EUTERPE does not experience this broadening.
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Figure 4.10: Comparison of the linear growth rate (left) and frequency (right) for
the continuum-interaction case [68, 84].The growth rate increases stepwise as more
complete physics is considered, suggesting the important of thermal gyrokinetic and
finite F) effects. In the left-most graph the same colours are used to represent
EUTERPE in mixed-variables formulation, FLU-EUTERPE with gyrokinetic bulk
ions, and the ideal MHD eigenvalue code CKA.

Finally, a fully gyrokinetic treatment of the thermal plasma yields a yet higher
growth rate, despite little change in mode structure. Physically, electron kinetic physics
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is added, potentially including electron inverse Landau damping, while the fluid trun-
cations are no longer present such that the complete collisionless E) physics is included.

Once again, in all cases, it is seen that the growth rate peaks at intermediate fast
particle temperature, dropping off at higher temperatures. Once again, FOW and FLR
effects are thought to be responsible, as the fast ion orbit widths become comparable
to the machine size and the gradient scale lengths.

The mode frequency also varies with fast particle temperature. Asin the ITPA TAE
benchmark case, the mode frequency tends to increase with the thermal temperature
of the fast particle population. In this case, however, the mode frequency begins at a
higher level than in the ITPA TAE case seen in figure 4.2. This is due to the higher
bulk plasma temperature.

As such, the mode frequency with a low temperature fast particle population begins
close to the upper boundary of the toroidicity gap. Referring back to the continuum
in figure 4.8, it can be seen that near the upper edge of the m = 10,11 gap, a mode
would be interacting with the continuum through poloidal side-bands with different
values of m. This would explain the mode structure modification behaviour presented
in figure 4.9.

Note that the upshift in growth rate over the ideal MHD model, where the bulk
plasma temperature is not a parameter, is dependent upon the higher bulk plasma
temperature compared to the ITPA TAE case. When the ITPA TAE bulk plasma
temperature of 1 keV is taken, there is no observed upshift in growth rate [68].

With the increasing fast particle temperature, the mode frequency actually leaves
the m = 10,11 ideal MHD toroidicity gap. Nonetheless, the mode is sufficiently
strongly driven that it remains unstable despite experiencing direct continuum damp-
ing. It is perhaps significant that this continuum damping begins at around the same
fast particle temperature where FOW effects reverse the increase in growth rate of the
mode, so that the two damping mechanisms are not easily distinguishable in this case.

This case illustrates the use to which the hierarchy of fluid models can be put
in distinguishing the causative mechanisms of various physical phenomena observed
in simulations of global modes. It is particularly significant that the multi-harmonic
global structure in the centre panel of figure 4.9 disappears when ions are no longer
considered as a separate kinetic species [84].

4.4 TAE elongation study

In the ITPA benchmark case, a circular geometry is considered. The choice of circular
geometry in the ITPA TAE benchmark case is a response to the limitations of some
codes. Some codes, for instance, assume circular flux surfaces. More complex geome-
tries are also known to be a source of numerical error when discretised, which can be
especially problematic when small numerical errors can be amplified, as in the case
of the cancellation problem. It has been observed in the past that fully gyrokinetic
simulations are more challenging in terms of the cancellation problem in non-circular
geometries.

Modern tokamak experiments, however, typically have significantly elongated ge-
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Figure 4.11: Growth rate (left) and frequency (right) for the ITPA TAE benchmark
with nominal parameters and 7 = 400 keV, except here the elongation parameter of
the magnetic equilibrium is varied. A minor frequency drop and significant reduction
in linear growth rate are observed.

ometries, which has beneficial influence on stability. It is therefore of interest both to
validate the code in non-circular geometry, and to investigate how a finite elongation
affects the physics.

We consider a case with the nominal ITPA parameters and fast particle temperature
Ty = 400 keV, but this time instead of circular geometry a 2D shaped cross-section
with finite elongation is considered. Elongation is quantified in terms of the elongation
parameter k, which is defined in terms of the minor and major radius as follows,

R.(0) = Ry +a cos(0), Z.(0) = ka sin(0) (4.4)

with 6 being the poloidal angle. Reactor-relevant tokamak plasmas such as JET and
ITER have an elongation around s ~ 1.8. We increase k stepwise between 1.0 and 1.8
by considering several different VMEC equilibria. These runs are repeated with both
the fluid-electron hybrid model and the fully gyrokinetic model.

In figure 4.11, we see that increasing elongation exerts a minor influence on the
mode frequency, which is reduced within the gap, while the linear growth rate of the
TAE mode is significantly reduced relative to the circular ITPA case, a result predicted
also by analytical theory. Almost exact agreement is seen between the fluid-electron
and gyrokinetic models.

Note that there is some quantitative disagreement between the growth rates and
frequencies in this case at kK = 0 and the corresponding circular tokamak I'TPA TAE
case presented previously. This is due to a somewhat different choice of bulk plasma
parameters, which shifts the position of the gap, but does not invalidate the observed
qualitative trends.

Since modern large tokamak experiments have a x of around 1.8, the significant
stabilisation effect of elongation is important for quantiative predictions of fast particle
transport by Alfvén eigenmodes. This effect should therefore be taken into account
in future numerical work aimed at providing experimental predictions of fast particle
behaviour.
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4.5 Internal kink mode

The internal kink mode is a current-driven MHD instability that occurs at a resonant
surface, that is where the safety factor, ¢, is an integer. Internal kink stability is one
limitation to the parameter space in which a toroidal magnetic confinement device can
operate. Since the instability of the internal kink mode generally increases with lower
rational surface number, it is generally of prime importance to calculate whether or
not the ¢ = 1 internal kink is stable. It is also related to many other phenomena that
occur even in stable steady state plasmas, such as sawtooth oscillations.

4.5.1 In a screw pinch

The screw pinch magnetic geometry is a linear geometry in which a magnetic field
is generated by a helical current. It can be seen as a limiting case for the tokamak
geometry in which the major radius goes to infinity. By analogy, the concept of a
safety factor for the internal screw pinch can be characterised as the inverse ratio of
the current in the direction parallel to the axis of the device, €,, and that around the
device, i.e. in direction €, X €,., where €, is the radial direction.

In screw pinch geometry the internal kink mode has been treated with fully gy-
rokinetic codes, such as GYGLES [67] and LIGKA [108]. The models implemented in
these codes are equivalent to those of linear fully gyrokinetic EUTERPE in axisym-
metric geometry. These codes can be used to benchmark the reduced models.

MHD
== GYGLES (T, = 5000 eV)
=-a FLU-EUTERPE (T, = 5000 ¢V) e

= 40000

Electrostatic potential

| . | . | . 1 000% : | . |

0 02 04 06 0.8 1 ' S Ly

Figure 4.12: The kink mode structure in terms of the perturbed electrostatic poten-
tial (left), and the growth rate as it varies with the position of the resonant surface
(right) [83].

We choose a screw pinch geometry where the ‘major radius’ of the screw pinch
Ry = 5.0 m (here the major radius merely defines the length of the simulation domain
and does not imply curvature), the minor radius r, = 1.0 m and the magnetic field
strength By = 2.5 T. Bulk plasma density and temperature profiles are flat, and
the internal kink mode is destabilised by the gradient of the bulk plasma parallel
current alone. The plasma density ng = 2 x 10 m™3 and the plasma temperature
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T, =T, = 5 keV. The safety factor profile is given by ¢(r) = 0.6 + 0.4(r/r.), where 7.
is radial position of the resonant surface where ¢ = 1.0.

In the Fourier filter the single Fourier harmonic with toroidal mode number n =1
and poloidal mode number m =1 is isolated, as there are no Fourier couplings in this
geometry. As shown in figure 4.12 (left), the expected mode structure is produced,
with the perturbed electrostatic potential rising linearly with r from the magnetic axis
before rapidly dropping off at the resonant surface. This result can be compared with
that from fully gyrokinetic GYGLES. As predicted by theory and previous simulations,
the mode has zero real frequency [67].

It is predicted by analytical theory that the growth rate of the internal kink mode
should vary with the position of the ¢ = 1 resonant surface. Quantitatively, the growth
rate of the internal kink mode can be compared with the previous results for different
values of 7., see figure 4.12 (right). The quantitative growth rates predicted by FLU-
EUTERPE, the gyrokinetic PIC code GYGLES, and MHD are in close agreement.
Both gyrokinetic models, however, show a reduced growth rate at higher bulk plasma
temperatures. This effect is stronger in GYGLES than FLU-EUTERPE, suggesting
that stabilisation in this case may also relate to finite ) effects, which are neglected
by FLU-EUTERPE.

4.5.2 In a tokamak

In a tokamak, the internal kink mode is driven unstable when a large toroidal plasma
current is present in the core of the device, reducing the safety factor such that it
crosses the the most unstable, ¢ = 1, rational surface in the core. The internal kink
mode is close to a limiting case, requiring a global treatment in the deep MHD limit,
and has therefore been difficult to simulate numerically.

Unlike in straight geometry, however, where the instability is purely current-driven,
in toroidal geometry the kink mode requires a radial pressure gradient to become
unstable [109]. As a result, the kink stability can also impose a limit on the achievable
normalised plasma pressure, 5. In particular, the destabilisation of an m = 1 kink-
like mode is thought to be responsible for the sawtooth cycle, a ubiquitous tokamak
phenomenon in which m = 1 unstable modes periodically accompany a collapse in core
density, temperature, and conductivity.

Although the m = 1 instability itself is an MHD instability, kinetic effects can
become important. There are two key effects. First, the resonant layer can be narrow
enough that kinetic effects can be important in determining the physics on the short
scales within the layer. Second, m = 1 modes can be both stabilised and destabilised
under the influence of fast particles by kinetic effects.

Considering the interal kink mode without fast particles, we first attempt a bench-
mark between the fluid thermal plasma FLU-EUTERPE model and the reduced ideal
MHD eigenvalue code CKA. The set of equations solved by FLU-EUTERPE are here
in principle equivalent to the vorticity equation solved by CKA, but the numerical
approaches are different. [83]

Our chosen magnetic geometry is a large aspect ratio tokamak with Ry = 2.5 m,
ap = 0.25 m and By = 4.6 T. The safety factor profile varies between ¢ = 0.85 at
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Figure 4.13: The radial mode structure of the kink mode in terms of the perturbed
electrostatic potential decomposed into poloidal harmonics compared from FLU-
EUTERPE and the reduced ideal MHD eigenvalue code CKA (left), and the mode
structure as perturbed electrostatic potential plotted in a cross-section through the
tokamak from FLU-EUTERPE (right) [83].

the magnetic axis to ¢ = 1.8 at the edge. The ¢ = 1 rational surface is located at
r/ag = 0.5.

The thermal plasma is taken to have a normalised pressure of 0.052 at the flux
surface s = 0.5, and average density 4.65 x 10 m=3. A density gradient is applied
with the form,

n'(s)

n

- e
= —K, cosh [ A }, (4.5)

where s is the nomralised poloidal flux, s, is the position of the peak gradient, A is
the characteristic width of the peak, and k, characterises temperature gradient. In
this case, the parameters chosen are x,, = 0.5, A = 0.2 and s, = 0.2. The temperature
profile is flat.

In FLU-EUTERPE, a filter is applied centred on the toroidal mode number n =
0 and poloidal mode number m = 1, with poloidal sidebands m = 0 and m = 2
also included. In CKA, a real frequency range is chosen within which to search for
eigenfunctions, and the calculated eigenmodes are visually inspected for agreement.
Since the internal kink mode has no real frequency, the choice of frequency range is
largely arbitrary provided it includes w = 0.

In FLU-EUTERPE, the internal kink mode is the fastest growing mode and there-
fore appears after a brief transient phase. In CKA, the internal kink mode is one
solution found, along with a large number of strongly damped continuum modes. In
figure 4.13, the mode structures calculated by the two codes are plotted and com-
pared; very close agreement is seen between the eigenvalue code CKA and the initial
value code FLU-EUTERPE. Both codes are also capable of calculating quantitative
growth rates, which in this case are also in close agreement, vpry = 1.29 x 10° s~ and
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Figure 4.14: Plots of the growth rate of the internal kink mode in tokamak geometries
scanned in elongation (left) and aspect ratio (right). Note the small but finite real
frequency that accompanies that downshift in the growth rate upon inclusion of
thermal ion gyrokinetics. [83]

Yora = 1.27 x 108 s71.

The internal kink mode exists in the far MHD limit, where k, p; is very small. It is
therefore a case in which the cancellation problem would be particularly prominent in
a fully gyrokinetic electromagnetic PIC model.

The initial benchmark is expanded by considering the effect of geometry and of
gyrokinetic thermal ions. In figure 4.14, the growth rate of the internal kink mode is
plotted for varying tokamak aspect ratio and elongation. Both the reduction in aspect
ratio and the increase in elongation are shown to improve the stability of the system to
the internal kink mode. An aspect ratio in the region of Ry/ap = 3.0 and an elongation
in the range of € = 1.8 correspond to the parameters of modern conventional tokamak
devices such as JET and ITER.

The results here confirm predictions of analytical theory. Work by Wahlberg, for
instance, shows that, in the parameter range relevant to current large tokamak experi-
ments, the internal kink mode is stabilised by decreasing aspect ratio at large 5 [110].
Later such work demonstrated that, with high § and a safety factor value ¢ close
to unity over a large proportion of the radius, elongation also stabilises the internal
kink mode. In the case of a weak pressure gradient and the ¢ = 1 resonant surface
being close to the magnetic axis, however, elongation can also be destabilising [111].
Numerically this second case was considered earlier by Bondeson and Bussac [112].

The addition of gyrokinetic thermal ions produces a consistent reduction in the in-
stability of the mode without affecting the qualitative trends. A new source of damping,
such as ion Landau damping, has been introduced but does not change the underlying
physics of the instability. This observation has been physically justified as the finite ra-
dial orbit widths of trapped particles serving to average perturbations radially [113, 62].
Gyrokinetic bulk ions also introduce a small but finite real frequency, consistent with
previous simulations using eigenvalue codes [62, 108].
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4.6 Linear m=1 EPM

In this section, we continue to consider the m = 1 mode, but now under the influence of
a population of fast particles. An EPM occurs when the fast particle [ is comparable
to the bulk plasma 3, and the mode structure can be significantly modified by the
influence of the fast particles.
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Figure 4.15: Growth rate and frequency of the linear m = 1 mode varying with
fast particle density fraction, py [83]. Two different modes can be distinguished by
their real frequency: the internal kink mode with approximately zero real frequency,
and the EPM with an approximately constant, finite real frequency. The transition
coincides with a change in the sign of the gradient of the growth rate in py.

The same magnetic geometry is used as for the kink mode simulations in the pre-
vious section. The bulk plasma temperature is lowered to T; = T, = 3 keV, with the
same bulk plasma gradients as in the previous simulations. Using the non-perturbative
code FLU-EUTERPE, the bulk plasma is treated as a fluid, as the kinetic effects we
are interested in come from the energetic particle population driving or damping the
mode.

We apply a Maxwellian population of fast deuterium particles with a density gra-
dient again of the form,

n'(s)

= hn cosh™? [%1 : (4.6)

where again s, = 0.2, A = 0.2 and s, = 3.0. The temperature of this fast particle
population is Ty = 300 keV, with a flat fast particle temperature profile. The strength
of the energetic particle drive is varied by varying the density, expressed from now on
as a fraction of the bulk plasma density, ps = ng/no.
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In figure 4.15, it can be seen that, upon increasing the fast particle fraction py, the
growth rate of the zero real frequency internal kink mode reduces. As before, it is sug-
gested that this is due to the finite radial displacement of the trapped particle banana
orbits averaging the perturbation radially, this time with larger orbit widths leading
to greater degree of averaging. The stabilisation of the sawtooth by fast particles has
also been seen experimentally [43], but as the fast particle § in existing experiments is
small compared to that in reactors, numerical simulations are important in quantifying
its significance. Stabilisation of m = 1 modes by fast particles has been predicted
numerically in ITER [59].

At py = 0.025, a sudden increase in the real frequency is observed and the growth
rate begins to increase linearly with py, eventually exceeding that of the kink mode in
the absence of fast particles. This is the emergence of an EPM, which corresponds to a
distinct branch of the dispersion relation. It would be reasonable to propose that this
frequency corresponds to the fast particle precession frequency.
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Figure 4.16: Kink and EPM mode structures calculated with FLU-EUTERPE com-
pared, from top to bottom and left to right: the pure MHD kink mode shown
previously, the kink mode under the influence of fast particles, the EPM at one
stage in its oscillation, and at 90° out of phase [83].
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In figure 4.16, the mode structure is plotted for the pure m = 1 kink mode, the
kink mode suppressed by fast particles, and finally the EPM, which in addition to
an m = 1 component now also has higher poloidal harmonic components. Both the
damped internal kink mode and the EPM rotate in the » — z plane under the influence
of fast particles, while the MHD internal kink mode is stationary.

One can see a slight modification of the mode structure coinciding with fast particle
stabilisation of the internal kink mode. This effect may therefore be encompassed by
a perturbative model, such as CKA-EUTERPE. The EPM, however, has a clearly
distinct mode structure, in which an m = 2 poloidal harmonic becomes co-dominant
with the m = 1 harmonic.

These simulations demonstrate the ability of the FLU-EUTERPE hybrid models
to simulate global mode physics in the deep MHD limit in shaped geometry close to
that of real tokamak experiments, where the gyrokinetic models encounter numerical
difficulties such as the cancellation problem and perturbative hybrid models exclude
important physics. The key physical features of kink stabilisation by fast particles, and
the fishbone EPM, have been demonstrated, along with the ability to include thermal
ion kinetic effects. Future simulations with parameters corresponding to fusion devices
such as JET and ITER can now be envisioned.

4.7 Global mode in Wendelstein 7-X
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Figure 4.17: The structure of a global mode in W7-X, depicted as the perturbed
electrostatic potential decomposed into poloidal modes plotted in radial position
(left), and as the total perturbed electrostatic potential plotted in a cross-section
through W7-X (right). Note that the poloidal harmonics in the left-hand plot are
normalised to the filter, such that plotted m = 0 corresponds to physical m = 14.

EUTERPE is a code developed to treat general 3D geometries. The primary applica-
tion of this capability is to investigate physics in stellarators. The optimised stellarator
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Wendelstein 7-X will be used to investigate the properties of a quasi-isodynamic geom-
etry. One limitation of the stellarator concept is poor fast particle confinement relative
to axisymmetric devices such as tokamaks. Wendelstein 7-X has been designed to ap-
proximate as closely as possible a quasi-isodynamic geometry principally in order to
mitigate this disadvantage.

Figure 4.18: The global mode in W7-X depicted as the perturbed electrostatic
potential decomposed into toroidal and poloidal components, plotted for the fluid
model (left) and fully gyrokinetic model (right). There is some difference in the
relative significance of some harmonics, but the structure of the mode found by
each model is qualitatively the same.

In the course of this work, the first global fully gyrokinetic simulations of W7-X
have been conducted. This case has then been considered with the hybrid models.

We consider the magnetic geometry of the envisioned W7-X ‘high mirror’ case,
in which the difference between the peak magnetic field strength and the minimum
magnetic field strength is greatest. This VMEC equilibrium corresponds to one of the
primary experimental scenarios that will be investigated with the device as it comes in
to operation.

We assume flat background plasma profiles with 7, = T; = 3 keV and ng = 1 X
10*® m™3. The equilibrium magnetic field on axis, By = 2.6 T. A Maxwellian fast
particle population is applied to drive global modes, with density profile given by the
equation,

A Spol — Snf
o) = ——tanh | 22— 4.7
nf(Spot) = Nof €XP [ — tan ( A )} (4.7)
with peak density ny =5 x 10'® m™* and temperature Ty = 1 MeV.
In an optimised stellarator case a high poloidal and toroidal resolution must be

adopted in general, which permits a wider Fourier filter in poloidal and toroidal mode
number. As greater coupling between adjacent modes is to be expected, it may be
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necessary to resolve this large number of modes. Furthermore, unlike in axisymmetric
simulations, physical toroidal coupling particularly is now present in linear simulations.

For this case we therefore choose a filter centred on poloidal mode number m = 14
and toroidal mode number n = —14, including all modes within the range +4 of these
central values. Note that, due to the five-period symmetry of the W7-X stellarator,
each step in toroidal mode space corresponds to a change in n of five.

In figure 4.17, we plot the mode structure in terms of the perturbed electrostatic
potential in a cross-section through the stellarator, using the hybrid model. In fig-
ure 4.18, the power spectrum is plotted in comparison for the fluid and gyrokinetic
models, showing a group of poloidal and toroidal harmonics localised in the filter.
Close agreement is seen between the fluid and gyrokinetic results, giving good reason
for confidence in the existence of this mode and the validity of both models.

The quantitative linear growth rate, however, is significantly different in the two
cases. The fully gyrokinetic model for these parameters shows a linear growth rate of
Yo = 6.51 x 10* rad s, compared t0 Vg = 1.42 x 10° rad s for the fluid model.
It is proposed that bulk plasma Landau damping is significant in this case, which may
be explicable by the high bulk plasma temperature.

4.7.1 Limits to stellarator simulations

Figure 4.19: Left to right: the global mode with dominant low poloidal and toroidal
mode numbers, the extended global mode structure seen with the electrostatic per-
turbation plotted on a log scale.

In the case presented in the preceding section, the normalised fast particle pressure,

B¢, was higher than the expected experimental values in Wendelstein 7-X or even a
reactor that may be based on its design. An experimental fast particle density in the
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region of py = 0.001 is to be expected for Wendelstein 7-X, and perhaps p; = 0.01
for a reactor, with comparable fast particle temperatures. With realistic bulk plasma
parameters, the experimental ratio of 3¢ to the thermal § is at least an order of
magnitude lower for Wendelstein 7-X and a factor two to five lower for a reactor.

To investigate the behaviour of the gyrokinetic code as fast particle parameters ap-
proach more closely the experimental, simulations were performed with progressively
lower ;. The minimum value of 3; that would yield a numerically stable and phys-
ically sensible result was observed to depend strongly on the poloidal and toroidal
resolution. Both were increased to the limits of the available memory for solving the
matrix equations in their present formulation and implementation.

Taking the highest resolution case considered, and including all resolvable poloidal
and toroidal mode numbers within a filter centred on m = 0 and n = 0, we are able to
resolve down to a fast particle pressure Sy of 0.0255,. We perform a simulation with
these parameters for the fast particles and all others as in the previous sub-section. At
large timestep the simulation fails. In figure 4.19, the power spectrum of the perturbed
electrostatic potential in terms of poloidal and toroidal mode numbers is depicted.
Re-plotting this data on a log scale, however, reveals a more complex extended global
structure of coupled modes.
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Figure 4.20: Left to right: the growth rate of the global mode with fast particle
density faction, the same global structure as above, now at low fast particle f and
large simulation time.

As the fast particle density is reduced, it is observed that this extended coupled
mode structure increases in relative strength. In the marginal case where a simulation
fails and at large timestep, the power spectrum at high timestep is plotted in figure 4.20,
an accumulation of electrostatic potential is observed where this structure meets the
edge of the filter. Similar behaviour is observed with both the gyrokinetic and fluid-
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electron hybrid schemes. In figure 4.20 (left), the variation of growth rate with fast
particle density is depicted; it can be seen that the mode is still far from marginal
stability at the lowest practical fast particle beta, and no significant transition occurs
at that point.

We observe that global stellarator simulations near to marginal stability with our
systems of equations require very high poloidal and toroidal resolution in order to re-
solve fine scale structures. One possible approach to this problem is to impose damping
to eliminate fine scale structures, while retaining the global mode of interest. Using
the fluid-electron hybrid model, the resistivity term is capable of doing this, and this
approach remains to be investigated.

It is also possible, however, that these fine scale structures are of numerical origin.
One common property of both the fluid-electron hybrid, and mixed variables gyroki-
netic models is the Ohms law equation, which may be a source of spurious numerical
modes which may be of comparable growth rate to the physical modes. In future work,
particular attention will be paid to the structure and consistency of the numerical
implementation of the equations in order to avoid this.
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Chapter 5

Non-linear simulations

In this section, the previous work is developed by repating studies of the same cases
but now solving the full first order non-linear gyrokinetic Vlasov equation,

afl = afl . (1 afl = aFO (1 8F0
2hy gy 2 WP gy 220 ) 51
ot " OR " v” aUII OR U” 81}” ’ ( )

where R and ¥ indicate the full equations of motion, for at least one gyrokinetic
species. Where the non-linear Vlasov equation is solved only for a fast particle species,
this means retention of wave-particle non-linear interaction. If the non-linear Vlasov
equation is solved for the bulk species, the wave-wave non-linear interaction is con-
sidered. As non-linear fluid terms derived in section 2.2 have not been included in
the numerical implementation, any species treated by the fluid model will be treated
linearly. A linear fluid model of one or more species may however be combined with a
non-linear gyrokinetic model of other species, however.

As discussed in section 1.3.3, a qualitatively new behaviour is introduced, the non-
linear saturation, whereby linear growth of an instability reaches an amplitude at which
it reaches a new stable equilibrium. To obtain experimentally relevant predictions it is
almost always necessary to reach a non-linearly saturated state. Successful non-linear
simulations are therefore vital for the successful development of a useful tool.

As previously discussed for fast particle-driven modes, it is generally only necessary
to consider the non-linear wave-particle interaction in order to obtain a saturation, al-
though wave-wave interaction can be important for accurate quantitative predictions
of the saturation level and saturated transport. Modes driven unstable by bulk gra-
dients, such as the m = 1 kink mode, require consideration of non-linear wave-wave
interaction.

In this chapter, we will first consider the ITPA TAE benchmark case non-linearly.
These results can be compared with those obtained previously by other hybrid codes.
The hybrid model can therefore be validated non-linearly. Proceeding further we con-
sider the effects of wave-wave interaction between multiple different modes in this case.

The m = 1 instability work from section 4.6 will then again be considered non-
linearly, demonstrating the successful simulation of the fishbone mode. Finally, the
proof of principle global mode in stellarator simulations from section 4.7 will be shown
to saturate non-linearly.
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5.1 Toroidal Alfvén Eigenmode

To begin non-linear investigations we first test the fluid-hybrid model against a case
that has already been performed non-linearly for other codes, the same ITPA TAE
benchmark that was considered previously. This geometry of this case will then be
used as a basis for further investigation. The case is particularly appropriate because
the important gyrokinetic physics is contained in the fast particle species, and so as an
initial test only this species need be treated non-linearly.

5.1.1 Non-linear ITPA TAE benchmark case
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Figure 5.1: The evolution of the ratio 6 B/ B, depicted for the ITPA TAE benchmark
case with wave-particle non-linearity considered, for the fully gyrokinetic model
(black) and the fluid-electron hybrid model with (blue) and without (red) damping.
The linear growth and non-linear saturated phases can be distinguished.

As an initial benchmark, we consider the ITPA TAE case using the fluid-electron
hybrid model with and without resistive damping, and the fully gyrokinetic model
without damping. In all cases, non-linear terms are retained only in the Vlasov equation
for the fast particle species. As discussed in section 1.3.3, previous work suggests that
this is qualitatively sufficiently when treating a single mode. All other physical and
numerical parameters are the same as in section 4.1, for the case where T = 400 keV.

In figure 5.1, we plot the evolution of the perturbed magnetic field, d B, as a ratio of
the unperturbed magnetic field, By, using all three models. Each shows a linear phase
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in which there is exponential growth of the perturbed magnetic field, followed by a
saturated phase during which the growth of the perturbation either halts or proceeds
at a slower rate. Without damping, both the fluid-electron hybrid and fully gyrokinetic
models show an upward drift in the perturbed magnetic field, which is eliminated by
resistive damping in the fluid-electron hybrid model. This drift is substantially slower
in the fluid-electron hybrid model than in the fully gyrokinetic model, perhaps due to
the presence of ion and electron Landau damping, or increased resistive damping.
Without damping, there is a similar non-linear saturated perturbation amplitude
in both cases, with an initial amplitude in the region of §B/By ~ 107%. The full E)
effects and /or electron kinetic physics therefore do not seem to have a strong influence
in this case. This, however, remains to be investigated in detail. Furthermore, cases in
which E effects and/or electron kinetic effects are known to be important may help
distinguish behaviour in the non-linear case. Resistive damping reduces the non-linear
perturbed amplitude by a factor of 2 — 3. Since this is the first non-linear result for
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Figure 5.2: The evolution of the ratio 0A|/Aj in the ITPA case depicted for two
non-linear gyrokinetic codes: NEMORB [114], which uses the p formulation of the
gyrokinetic equations of motion, and EUTERPE, which uses the mixed variables
formulation of the equations.

this case using a fully gyrokinetic model with self-consistent fields, it is also of interest
to benchmark the result with another gyrokinetic code in addition to reduced models.
Due to recent improvements in the axisymmetric global electromagnetic gyrokinetic
code NEMORB, such a comparison is possible in one case.

The comparison case chosen is the ITPA TAE case with Ty = 500 keV, a reduced
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mass ratio m;/m,. = 200, and the fast particle concentration adjusted so as to equalise
the linear growth rates at v, = 3.5 x 10* m~3. In NEMORB is this the nominal ITPA
density profile, and in EUTERPE it is the nominal ITPA density profile multiplied
by a factor of approximately 0.7. We choose to hold constant the linear growth rate
instead of the physical parameters because it is believed that the linear growth rate
determines the non-linear physics, and for given physical and numerical parameters
the linear growth rates differ between codes, as discussed in section 4.1 and depicted
in figure 4.5. Although divergences between the linear physics predictions of the two
codes are of some interest, they are not essential to benchmarking the capability of
each code in the non-linear regime.

In figure 5.2, a comparison is plotted between the evolution of the perturbed parallel
vector potential A"*‘ in normalised EUTERPE units, which are the same normalised
units used in NEMORB. Excellent agreement is seen in the qualitative behaviour and
the observed saturated perturbed amplitudes.
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Figure 5.3: The evolution of the profiles of the energetic particle populations in the
non-linear simulations using the fluid-electron hybrid model (left) and the fully gy-
rokinetic model (right). For reference, the time points can be compared to figure 5.1.
The location of the mode peak, s = 0.25, can be seen to coincide with the point of
greatest flattening in both cases.

In figure 5.3, the evolution of the fast particle profiles is compared in the undamped
case with both the fluid-electron and the gyrokinetic models. One saturation mecha-
nism is the redistribution of fast particles such that the driving fast particle gradient
gradient is reduced. In the fluid-electron hybrid model, some flattening is observed.
However, in the fully gyrokinetic case this flattening is noticeably greater. A large pro-
portion of the fast particle population is transported from the deep core to the central
area of the device in the saturated stage, filling in the central fast particle gradient in
the region of the mode peak.

Aside from its role in saturation, this fast particle redistribution is interesting in
its own right, as a series of Alfvén eigenmodes at different radial locations can produce
a pattern of profile flattening that quickly transports fast particles out of the device.
In figure 5.4, the particle flux at each surface is plotted. Although the main transport
takes place inside the device, in the gyrokinetic case there is somewhat greater transport
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Figure 5.4: Evolution of the flux of energetic particles in nonlinear simulations using
the fluid-electron hybrid model (left) and the fully gyrokinetic model (right). Again,
time can be compared to figure 5.1. At large ¢, the fully gyrokinetic model shows
greater particle flux than the hybrid model. This may be compared to the difference
in profile flattening shown in figure 5.3.

toward the edge. As only a single mode is included in this simulation, transport across
the whole radial extent of the device may be lower than in an experimental case.

In figure 5.5, the mode structures for the ideal and resistive fluid models, and the
fully gyrokinetic model, runs depicted in figure 5.1 are plotted and compared. In the
linear phase all three are practically identical as expected from section 4.1. In the
non-linear phase, all models exhibit a comparable minor mode structure modification.
This mode structure modification is of potential interest as it has not been considered
by prior perturbative models, in which the mode structure is fixed.

Continuing, we conduct the non-linear ITPA TAE benchmark with other [non-
|perturbative hybrid non-linear codes, using both fully gyrokinetic and fluid-electron
hybrid models. Analytical theory predicts a quadratic relationship between the linear
growth rate and the saturated perturbation amplitude in 6 B/ By. By varying the linear
growth rate in the ITPA case, we can compare the trends obtained with different codes.

In the fluid-electron hybrid simulations, a resistive damping is applied correspond-
ing to a plasma Lunquist number of order 10*. This value is chosen such that the
linear growth rate and saturated amplitude at one chosen point coincide with those
of the other codes in the benchmark and does not necessarily represent experimental
conditions.

The codes MEGA, HMGC, and CKA-EUTERPE all also use damping to obtain a
clean saturated amplitude for the mode. The code VENUS-K does not. As the fully
gyrokinetic EUTERPE does not apply a damping, VENUS-K is therefore the most
appropraite comparator. For EUTERPE, the non-linear perturbed amplitude is taken
just after the end of the exponential growth phase, i.e. correponding to t ~ 15000082, *
in figure 5.1. This introduces some element of uncertainty as the position at which the
non-linear perturbation amplitude is to some extent arbitrary. However, in the fully
gyrokinetic case the amplitude grows linearly with time and increases by only a factor
of 2 in order 100000€2;*, so it should be possible to obtain a meaningful trend.
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Figure 5.5: Mode structure comparison for the three models depicted in figure 5.1,
from left to right: the ideal (undamped) fluid-electron hybrid model, the resistive
fluid-electron hybrid model, the fully gyrokinetic model. Linear mode structures
depicted above, non-linear below. All models show minor modification in the non-
linear phase.

The linear growth rate is varied by varying the fast particle density fraction, between
factor 0.5 and 2.0 of the nominal I'TPA value. As shown in figure 4.4, the linear growth
rate of the TAE in the ITPA case increases linearly with the fast particle density
fraction. Theory predicts that the mechanism for altering the linear growth rate should
not be important.

In figure 5.6, the results are plotted for the fluid-electron hybrid model FLU-
EUTERPE and the fully gyrokinetic model EUTERPE, along with the perturbative
hybrid model CKA-EUTERPE, the non-perturbative hybrid codes MEGA and HGMC,
and the perturbative hybrid code VENUS-K. For FLU-EUTERPE, we obtain saturated
amplitudes over a range of growth rates between v = 1 x 10* s™! and v = 1 x 10° s71,
and for EUTERPE over a narrower range. The difference in range is due to the in-
clusion of drift kinetic simulations for the FLU-EUTERPE case (ZLR), while all fully
gyrokinetic EUTERPE simulations include FLR effects.

First, good agreement is seen between the FLU-EUTERPE results and those from
comparable codes. MEGA and HMGC are both, like FLU-EUTERPE, non-perturbative
fluid hybrid models of varying complexity, which include resistive damping. CKA-
EUTERPE has all of these same features but with a fixed mode structure.

All codes show good agreement with the quadratic scaling for low linear growth
rates. The trendline in the log-log plot corresponds to the quadratic trend between
the linear growth rate and the non-linear saturation amplitude. In the Berk-Breizman
model [22, 23], a quadratic dependence of the saturated amplitude on the linear growth
rate is predicted. As the linear growth rate increases, this drops toward a linear rela-
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tionship between the linear growth rate and the saturated amplitude.

Some difference is seen in saturated perturbation amplitude between the fluid-
electron hybrid simulations with and without FLR effects. Those simulations without
FLR effects show a slightly higher saturated level, but the same trend. It is possible
that there is a minor modification of the physics by bulk ion FLR effects, as no such
discrepancy is observed with the perturbative hybrid model CKA-EUTERPE.

The fully gyrokinetic results, meanwhile, show good agreement with the correspond-
ing undamped perturbative hybrid model VENUS-K. These results are the first in this
case obtained with a fully gyrokinetic non-linear global code. They suggest that, at
least in this relatively simple case, the additional information provided by a gyrokinetic
description of bulk ions and electrons is not that significant in predicting the saturated
perturbation level.
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Figure 5.6: The relationship between the linear growth rate and eventual saturated
amplitude of the maximum magnetic field perturbation as a ratio of the background
field for a number of codes [115, 116, 117, 118]. Note that there is a quadratic rela-
tionship, § B ~ ¢, over some range of growth rates. This relationship is predicted
by analytical theory [22, 23].

In the higher growth rate cases, mode structure modification is observed in the

non-linear phase. In figure 5.7, the linear mode structure is plotted in comparison with
the mode structure in the non-linear saturated phase for cases with linear growth rates
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Figure 5.7: A depiction of mode structure modification in the saturated phase for
non-linear simulations in terms of decomposed poloidal (m) harmonics. From left to
right: the mode structure in the linear phase, the mode structure in the saturated
phase for linear growth rate v = 1.05 x 10* s7!, and the mode structure in the
saturated phase for linear growth rate v = 5.67 x 10* s~

This mode structure modification is not captured by perturbative codes, where the
perturbed fields are fixed to the linear mode structure. Mode structure modification is
caused by, for instance, fast particle profile relaxation, which changes the position of
the peak gradients.

In figure 5.8, time series are plotted depicting the range of frequencies occupied by
the mode. Note that the axis are in terms of €2,, the cyclotron frequency. In this case
Q, = 2.86735 x 10° rad s, and so a mode frequency of 4 x 10° rad s~! corresponds
to 0.001395 €2.. In the left hand column, frequency spectra are plotted including FLR
effects, and in the right hand column, frequency spectra from corresponding simulations
considering only drift kinetics. Both columns descend from lowest to highest fast
particle density fraction and therefore mode drive. All of these simulations have been
performed with the fluid-electron hybrid model with resistive damping and the points
with FLR correspond to those plotted in figure 5.6.

The highest driven modes exhibit an upshift in frequency into the continuum. In
the simulations without FLR, two exhibit a characteristic pattern with in which the
frequency does not maintain a constant set of values. These frequency spectra differ
from those obtained with the perturbative code CKA-EUTERPE, in which the mode
structure may not evolve. In particular those simulations exhibit a characteristic down-
ward frequency sweep in the non-linear phase. In the perturbative simulations a clear
progression in the frequency time series structure is also seen with increasing growth
rate. In this case, however, there appears to be a qualitative difference between pat-
terns obtained in the FLR and no-FLR simulations, and the no-FLR simulations do
not show steady, discrete evolution with increasing growth rate.

It is therefore plausible that mode structure modification in the non-linear phase
observed with the non-perturbative models may be of significance in stabilising the
mode frequency around the linear frequency. It is also plausible that, in this case, FLR
effects have qualitatively different influence. Of particular note is that bulk plasma
FLR effects are excluded in the perturbative model but present here. Note however
that the diagnostic used here may also be insufficient to consider evolving modes with
evolving structures as it takes data from a single spatial domain.
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5.1.2 Non-linear wave-wave interaction

So far, only a single mode has been considered in the ITPA TAE case, the m = 10, 11,
n = —6 Toroidal Alfvén Eigenmode. Other TAEs exist in this geometry. Referring
again to the condition for the peak of a TAE,

m + 0.5
q(r) = ———, (5.2)
n
we see that a m = 3,4, n = —2 TAE should also exist at the same ¢ value, and

therefore at the same radial position although at a different frequency, as the TAE
mode already considered. This mode in fact has a higher linear growth rate than the
n = —6 mode, and therefore in a linear analysis without a restricted filter ought to
dominate the system.

In the non-linear regime, however, modes with different poloidal and toroidal mode
numbers can interact non-linearly such that the behaviour of the entire system is also
affected by the influence of sub-dominant modes. We now use the ITPA TAE case to
explore this behaviour.

In order to treat the wave-wave non-linearity, it is necessary to consider non-linear
terms in the calculation of the Shear Alfvén Wave mode structure, that is, the collective
behaviour of the thermal plasma.

There are different possible approaches to this problem. One is to employ the fully
gyrokinetic EUTERPE code to solve the non-linear gyrokinetic equation for all species.
This, however, is highly computationally demanding. Another possible approach is to
solve non-linear fluid equations for the thermal plasma, which has been pursued by,
e.g. HMGC and MEGA [33].

In this section, we consider simulations using the fluid-electron hybrid model in
which both fast and thermal ions are treated by solving the non-linear gyrokinetic
equation. Bulk plasma non-linearity enters via the bulk ions, while the bulk electrons
are treated with a linear fluid description.

We choose the same parameters as in the previous simulations, with fast particle
temperature Ty = 400 keV and no resistive damping. The filter is selected to include
mode numbers 3 < m < 14 and —6 < n < —2, such that both the n = =2 and n = —6
are retained.

In figure 5.9 (left) we plot the resulting power spectrum in the saturated non-linear
phase. It can be seen that from a dominant n = —2 mode in the linear phase, a
spectrum of modes emerges following the safety factor profile, including both the n =
—2 and n = —6 modes and numerous intermediate mode number modes which exist
only in the non-linear phase. Note that non-linear power transfer between the modes
results in the n = —2 and n = —6 modes having comparable saturated amplitudes,
despite the higher linear growth rate of the n = —2 mode in the linear regime.

A further simulation is performed, this time with the mode numbers 0 < m < 14
and —6 < n < 0, such that the zonal mode m = 0, n = 0 is now included. The zonal
mode can be particularly important in the non-linear regime. In figure 5.9 (right), we
once again plot the power spectrum, this time for a multi-mode simulation including
the zonal mode. In this case the zonal mode comes to dominate the power spectrum,
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Figure 5.9: The saturated power spectrum for the wave-wave interaction cases with-
out (left) and with (right) consideration of the zonal mode at n = 0 = m. In the
case without zonal coupling, both n = —2 and n = —6 TAEs are visible, along with
a line of intermediate modes created by non-linear coupling. In the case with zonal
coupling, the zonal mode dominates, but note that the same line of coupled modes
is barely visible in this case too.

although the string of coupled modes with alignment determined by the safety factor
profile can still barely be seen at a much lower amplitude.

In figure 5.10, poloidal cross-sections are plotted depicted the electrostatic potential
perturbations for each of these cases in the linear and non-linear phases respectively.
In the linear phase, there is a noticeable difference between the single and multimode
simulations, as the harmonic structure is modified by the influence of the small n = —6
contribution. As its linear growth rate is lower than that of the n = —2 TAE, its
influence diminishes in the course of the simulation. Both multimode simulations, in
the absence of non-linear coupling, appear similar at this stage.

Later, however, there appears a very significant difference between the saturated
structure of the perturbed potential in each simulation. While the single mode remains
clear and similar in structure to its linear phase, the multimode simulations appear
radically different, with individual modes no longer clearly distinct and in the case
where the zonal mode is included it dominates all other activity.

In figure 5.11 is plotted the evolution of the ratio of the maximum magnetic field
perturbation to the background field strength compared for the lone n = —6 and
n = —2 modes, and both multimode simulation setups. The saturation amplitude
progressively reduces as greater coupling is included, being highest for the single mode
and lowest for the simulation with coupling between multiple modes and the zonal
mode. Both coupled mode simlulations show a lower saturated perturbation amplitude
than either single mode simulation.

It is also noteworthy that the perturbed magnetic field amplitude saturates cleanly
in both multimode cases without an applied resistive damping, which is not included
in any simulations presented here. In the case where only wave-particle interaction is
considered there is once again observed a constant sub-exponential upward drift in the
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Figure 5.10: Plots of the perturbed electrostatic potential in a poloidal cross-section
through the torus in the linear (above) and non-linear (below) phases for, from left

to right, the single mode n = —2 simulation, the multimode simulation without
zonal mode, and the multimode simulation with zonal mode. Note that the single
n = —2 mode saturates at a higher amplitude than the n = —6 mode; both single

modes, however, saturate at a higher level than either coupled system.

magnetic field perturbation amplitude. In a realistic multimode simulation, therefore,
it should be unnecessary to apply an artificial damping in order to obtain a result. Since
artificial damping would also contaminate that result, this behaviour is desirable.

These simulations therefore demonstrate that a single-mode treatment can overstate
the extent to which a TAE may perturb the background magnetic field in comparison
with a more complete multimode treatment, and therefore the magnitude of transport
of particles and energy for which it may be responsible. Multimode simulations includ-
ing wave-wave interaction will therefore be necessary to produce transport predictions
for experimental cases.

So far, detailed multimode non-linear simulations have been performed only with
perturbative codes, such as HAGIS [48, 49]. Such codes do not self-consistently consider
non-linear effects in the thermal plasma. It is therefore proposed that such simulations
be repeated with codes capable of treating self-consistent wave-wave non-linear physics.

Such work is of immediate interest predicting the likely effects of fast particle physics
in large reactors such as ITER and DEMO, as well as a prospective stellarator reactor,
since these machines will have relatively large fast particle concentrations. Such pre
dictions are necessary both in order to assess the suitability of different possible designs
and also to tailor operational scenarioes in which the device may be safely operated
and with optimal fusion power output.

97



0.1 ¢ . . .
0.01
0.001
0.0001
o :
e 1e-05 ¢
(2] |
1e-06 ¢
1e-07 |
1e-08 | n=-2andn=-6 3
[ with zonal mode included ——
1e-09 ' ' '
0 50000 100000 150000
t (@7

Figure 5.11: The evolution of the magnetic field perturbation. One can compare
saturation levels for simulation of a single mode (red), 2 < n < 6 (pink), and
0 < n < 6 (blue), in the absence of resistive damping. Greater coupling is associated
with progressively strong damping of the saturated amplitude. For comparison, the
perturbed magnetic field evolution is plotted for the single modes corresponding to
n = —2 (red) and n = —6 (green).

5.2 Fishbone instability

The fishbone instability is based on the m = 1 EPM. The term ‘fishbone’ refers to
characteristic experimental measurements in which strong frequency chirping led to
frequency time traces resembling a fishbone. This chirping behaviour is fundamentally
non-linear and the fishbone instability is therefore a non-linear phenomenon.

In this work, the full non-linear physics of the fishbone mode cannot yet be treated,
as it depends upon both non-linear wave-particle interaction and the non-linear wave-
wave interaction of the bulk plasma. In particular, the m = 1 kink mode is an in-
dependent fluid instability, which will not reach saturation without considering fluid
non-linearities. Absent such a saturation mechanism, it will eventually overcome a
saturated m = 1 EPM.

It is, however, possible to consider the non-linear wave-particle interaction alone,
and thereby illustrate some key features of the non-linear instability. In this section,
such a non-linear extension of the preceding work will be presented.

Taking the same geometry as in section 4.6, we compare the evolution of the per-
turbed magnetic field as a ratio of the equilibrium magnetic field, 6 B/ By. In figure 5.12,
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a time trace is plotted for the above cases corresponding to py = 0.04 and py = 0.01,
i.e. to the modes we have previously identified as the m = 1 EPM and the internal
kink mode respectively.
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Figure 5.12: Time traces of the evolution of the perturbed magnetic field strength
as a ratio of the equilibrium field strength, 0B/By, for two cases: py = 0.04 (red)
and py = 0.01 (black), corresponding to the m = 1 EPM and the m = 1 internal
kink mode respectively.

The most striking difference is that the m = 1 EPM time trace shows a non-
linear saturated stage, during which the magnetic field perturbation ceases to grow
exponentially and levels-off at a constant value. The internal kink mode does not
demonstrate this behaviour. This is anticipated, as the internal kink mode is driven
unstable by the bulk plasma current and pressure, not by the gyrokinetic energetic
particle population.

It is also noteworthy, however, that the m = 1 EPM time trace exits the saturated
stage at a later time, and resumes exponential growth. Since the internal kink and
m = 1 EPMs are fundamentally separate modes, it is anticipated that in the m =1
EPM cases internal kink modes continue to grow sub-dominantly but are obscured by
the faster growing EPMs. Since the saturation mechanisms apply to the EPM but not
the internal kink, the saturated EPM eventually gives way to the unsaturated linear
internal kink.

These characteristics of the numerical results therefore reinforce the conclusion that
there is a true transition from an ideal MHD eigenmode to an energetic particle mode
resulting from the inherently kinetic interaction of the fast particle population with
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the bulk plasma.
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Figure 5.13: Poloidal cross-sections of the perturbed electrostatic potential for the
saturated m = 1 EPM case a short time into the saturated phase (left) and deep
in the saturated phase (right). Comparing these plots to those of the linear m = 1
modes in figure 4.16, the resemblance to the linear internal kink mode in the latter
case is clear.

In figure 5.13, the mode structure in the saturated non-linear phase is plotted. It
can be seen that at late simulation time, when exponential growth has resumed, the
mode structure resembles that of the damped internal kink case from figure 4.16. This
suggests that the low growth rate internal kink mode has in fact re-emerged. At lower
time, at the beginning of the saturated phase, we see the modification of the mode
structure of the m = 1 EPM itself. Although the basic m = 1 and m = 2 structure
remains visible, finer structure emerges radially.

As discussed in section 2.2, it is possible to extend the fluid model of the thermal
plasma to include fluid non-linearities. Longer time simulations, and ultimately exper-
imental comparison and prediction, involving the fishbone mode would then become
possible. Simulations with the fully gyrokinetic model, or with the fluid-electron hy-
brid model, can also be pursued which could take account of the fluid non-linearity
through the non-linear gyrokinetic equation, which reduces to the fluid equations in
the appropriate limits.

5.3 Non-linear stellarator

Taking the successful linear W7-X global mode case from section 4.7, we attempt a
proof of principle non-linear simulation in the optimised stellarator geometry. Here,
only the wave-particle interaction is treated non-linearly and the FLU-EUTERPE
model is used, the bulk plasma being treated as a fluid.

In figure 5.14 (left) the evolution of the magnetic field perturbation for the p; = 0.05
case is plotted. A clean linear phase followed by a non-linear saturated phase are visible.
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Figure 5.14: Left: the evolution of the ratio of the maximum perturbed magnetic
potential to the equilibrium magnetic field for the global mode in Wendelstein 7-
X with p; = 0.05. As in the tokamak case, a clean linear growth phase can be
distinguished from a non-linear saturation phase. Right: comparison of the evolution
and saturation of the perturbed magnetic field for several values of ps, between
0.0375 and 0.075.

The saturated perturbed magnetic field amplitude is very high, at order § B/ By ~ 1072,
which in a fusion experiment would be deleterious for the plasma performance. In this
case, however, it is most likely an artefact of the very high fast particle normalised
pressure, 3¢, which is much greater than in even a reactor.

In figure 5.15, the linear and non-linear mode structures are plotted in comparison,
in terms of the variation of the perturbed electrostatic potential in a cross-section
through the device. Note that in this simulation there is a large Fourier filter that does
not exclude the zonal mode, which becomes important.

This result shows that the stellarator geometry does not present a fundamental
numerical obstacle to the performance of non-linear hybrid simulations. Ultimately,
then, it should be possible to produce saturated transport predictions for global modes
in stellarators using the hybrid models. In future work, the wave-wave interaction may
also be considered in stellarators.

As a first exploitation of this new capability, we consider the relationship between
the saturated magnetic field amplitude and the linear growth rate in the above case for
a range of fast particle densities. Again we consider only the wave-particle non-linearly
here. In figure 5.14 (right), time traces for the evolution of the perturbed magnetic
field are presented for a range of linear growth rates. The fast particle density is varied
between 3.75% and 7.5% of the thermal electron density.

The qualitative difference in growth rate can be easily inferred from figure 5.14
(right). Those modes with higher fast particle drive and therefore higher growth rate
saturate sooner. This corresponds to no significant difference in the level at which each
saturates, when compared at the same time into the saturated phase.

The relative constancy of the saturated amplitude may be consistent with the trend
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observed in the tokamak case. Referring back to figure 5.6, it can be seen that the
saturated perturbation amplitude increases more slowly with linear growth rate as the
two increase to higher values. As the amplitudes in this stellarator case are between one
and two orders of magnitude larger than the largest in that comparison, it is plausible
that the results obtained in this stellarator case are consistent with the continuation
of this already observed trend.

A precise quantitative comparison is not possible because the undamped single
modes drift in perturbed amplitude after saturation, as already shown in the simple
tokamak case in figure 5.1. By including resistive effects, this would be possible. This
could be compared with the tokamak results at comparably high growth rates. How-
ever, it may be more interesting to consider more realistic parameters. Note that in the
highest growth rate case where py = 0.075, the time trace drifts up close to 6 B/By = 1,
and the simulation fails as the ordering assumptions of the numerical model have been
violated.

This study nonetheless demonstrates the feasibility of the tool for non-linear physics
investigations in stellarator geometry, and illustrates that many of the same basic
features are present as have already been founded in tokamak studies. Meanwhile, the
evidence of substantial mode structure modification in the saturated non-linear phase
suggests the importance of a non-perturbative approach.
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Figure 5.15: The perturbed electrostatic potential plotted in a cross-section through
the device for the linear (left) and non-linear (right) phases of evolution of the global
mode in W7-X.
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Chapter 6

Conclusions

6.1 Key results

The overarching purpose of this work has been to expand the range of physical pa-
rameters for global modelling of magnetically confined fusion plasmas by development
and utilisation of the EUTERPE code. Important limitations to such simulations have
included the ‘cancellation problem’, which affected simulations in the MHD regime
where k), p; — 0. A further important limitation was that non-linear simulations had
not been attempted in some regimes with the EUTEPRE code and, with some mod-
els, at all. In this work, both aspects have been addressed, with a particular but not
exclusive emphasis on fast particle interaction with global modes.

The cancellation problem, and other numerical limitations, have been addressed in
two ways. First, two simplified self-consistent fluid-kinetic hybrid models have been
implemented for the code, both with and without thermal ion gyrokinetic effects. Sec-
ond, an improved numerical scheme, developed by Mishchenko and co-workers [80, 81],
has been explored and exploited.

The fluid models have been extensively benchmarked. It has been shown that:

e Linear growth rates and mode frequencies for a Toroidal Alfvén Eigenmode in a
circular tokamak benchmark case agree with those found using a range of other
codes, from perturbative hybrid models to self-consistent fully gyrokinetic codes.
This case can be generalised to more realistic geometry including elongation,
demonstrating reduction in the linear growth rate with increasing elongation.

e Linear growth rates and mode frequencies diverge in a more complicated case
where gyrokinetic thermal ion, and finite E), effects become important. The
self-consistent non-perturbative hybrid models show better agreement with the
fully gyrokinetic model than previous simulations performed with a perturbative
hybrid model.

e Simulations are possible using both hybrid fluid-electron and fluid bulk plasma
models in the deep MHD (k,p; — 0) regime, such as the m = 1 internal kink
mode. An EPM branch of this mode - the linear stage of the fishbone instability
- has been simulated in the presence of a fast particle population, which cannot
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be done with fixed mode structure perturbative codes. Non-linear saturation of
the EPM has also been demonstrated using this model.

e In non-axisymmetric stellarator geometry, it has been shown that simulations of
linear wave-particle interaction are possible and a scan has been performed in
fast particle density for a mode identified in the strongly shaped Wendelstein
7-X stellarator geometry.

e Non-linear simulations resulting in saturated field perturbations are possible in
both tokamak and strongly shaped stellarator geometries. In the tokamak case,
the saturated levels have been benchmarked successfully against other pertur-
bative and non-perturbative hybrid codes. Mode structure modification in the
non-linear phase has been observed with the self-consistent models.

e When non-linear wave-wave interaction is considered in a simple TAE case, qual-
itatively different behaviour is observed and the quantitative saturated perturba-
tion amplitude is seen to be significantly reduced. Both coupling to other TAE
modes and to the zonal mode have been shown to have significance in determin-
ing the saturated amplitude. When the wave-wave non-linear interaction between
two TAE modes is considered the final saturated perturbation amplitude is found
to be lower than that of either of the modes considered separately. Inclusion of
the zonal mode results in a further decreased saturated amplitude.

We may therefore apply the hybrid models with good confidence for a wide range of
device parameters and geometries, including some regimes where fully gyrokinetic elec-
tromagnetic PIC currently performs poorly or is incapable of yielding results. Limita-
tions have been encountered simulating modes in stellarator geometry close to marginal
stability. In Wendelstein 7-X these limitations begin while the normalised fast particle
pressure 3y is still comparable to the normalised bulk plasma pressure.

Improvements to the electromagnetic gyrokinetic PIC method, which were not de-
veloped as part of this thesis, have been utilised in some situations for the first time
here. Key results in this respect include:

e All previous linear benchmark cases, such as the linear ITPA TAE case with and
without elongation, have been reproduced using the new scheme, yielding good
agreement.

e The first nonlinear, global, electromagnetic, fully gyrokinetic simulations of Toroidal
Alfvén Eigenmodes, reproducing a trend predicted by analytical theory and con-
firmed by the hybrid models. The inclusion of electron kinetic effects does not
seem to be significant in this case.

e The first linear global, electromagnetic, fully gyrokinetic simualtions of fast particle-
driven modes in optimised stellarator geometry, such as that of Wendelstein 7-X,
have been performed in the same parameter regime as those considered with the
hybrid models and substantially verified by comparison with the hybrid models.
A significantly lower mode growth rate is observed suggesting that bulk plasma
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damping mechanisms such as ion Landau damping may be important in the
Wendelstein 7-X operational regime.

Compared to the previous fully gyrokinetic scheme in the standard ITPA TAE
reference case the new gyrokinetic scheme was found to be at least two orders of
magnitude more computationally efficient. The fluid hybrid models were found to be
about an order of magnitude more computationally efficient again. Time step and
CPU-hour requirements have been relaxed for instance by eliminating the need to
resolve the fast electron motion. A more modest speed-up was observed between the
fluid-electron hybrid model and the fluid bulk plasma hybrid model.

The fully gyrokinetic and hybrid models have both been demonstrated to be capa-
ble of demonstrating non-linear saturation in both tokamak and stellarator geometry,
which in principle permits the calculation of saturated energy and particle transport
due to global modes, the ultimate goal of work in this area.

6.2 Outlook

Since the ultimate goal of this line of modelling work is to predict the behaviour of ener-
getic particle driven modes in current and future stellarators, necessary improvements
to the physical model and numerical treatment will be considered.

One significant omission in the current models is collisionality. Although high
temperature plasmas in the core of a fusion device are very nearly collisionless, the
collisionality reducing with temperature as v ~ T~3/2, a damping mechanism has been
shown to be important in determining the saturated amplitude of a field perturbations
due to an unstable mode. EUTERPE contains a pitch angle scattering collision opera-
tor, while remains to be benchmarked and exploited for modelling the physics of global
modes.

Another interesting area of exploration, which has been touched upon in this thesis,
is the self-consistent non-linear interaction of multiple modes. Since many modes will
likely coexist in a reactor, and their interaction is important in determining the final net
transport, the self-consistent models developed and exploited in this thesis are ideally
placed to investigate such effects. It has already been demonstrated in this and other
work that consideration of non-linear wave-wave interaction can significantly affect the
final saturated perturbed field amplitude. Such investigations should also be repeated
and verified using the fully gyrokinetic model.

Since EUTERPE is currently the only electromagnetic gyrokinetic code capable of
performing fully global electromagnetic gyrokinetic simulations in stellarator geometry,
it would be particularly sensible for the code to be used as a support for Wendelstein
7-X experiments. Code predictions can be benchmarked against the expeimental mea-
surements and can then be used to help explain experimental measurements and also
to provide fast particle transport predictions for future reactor and stellarator optimi-
sation concepts.

Owing to the complexity of the task, and the fact that Wendelstein 7-X is yet
to enter full operation at the time of writing, much of this detailed work remains
ahead. It will be particularly important to improve the numerical treatment such that
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simulations become possible closer to marginal stability. The groundwork, however,
has been laid in this thesis.

One hypothesis of potentially great significance is that, in the absence of the Green-
wald density limit in a stellarator, operation may be possible at sufficiently high den-
sities that fast particles are rapidly thermalised to the point that their excitation of
Alfvénic modes in a stellarator reactor may be unimportant for fast particle transport.

The careful consideration of realistic distribution functions, combined with simula-
tion near marginal stability will be necessary to approach this question using the tools
that have been developed in this work. Confirmation of this hypothesis would reveal
a significant advantage of the stellarator design, while falsification would highlight the
importance of simulation and experimental work with respect to fast particle physics
in order to realise a working stellarator reactor.

The tool that has been developed allows deep future exploitation. In addition
to those physical processes so far considered, the model can be extended to include
drift wave physics. This will permit the simulation of gradient-driven turbulence,
and ultimately the consideration of the interaction between global Alfvénic modes and
turbulence. Thus far a full understanding of non-linear mode-mode interaction between
Alfvén waves remains elusive.

Further improvements to the diagnostics are also envisioned. For instance, extensive
work by Briguglio and co-workers to produce a phase space diagnostic for non-linear
simulations will be implemented and used to better understand the fully non-linear
results obtained in the course of this work.
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