Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit

MPG-Autoren
/persons/resource/persons127743

Dhara,  Chirag
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons98154

Renner,  Maik
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62438

Kleidon,  Axel
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dhara, C., Renner, M., & Kleidon, A. (2016). Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit. Geophysical Research Letters, 43(14), 7686-7693. doi:10.1002/2016GL070323.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-0373-3
Zusammenfassung
Longwave radiation and turbulent heat uxes are the mechanisms by which the Earth's surface transfers heat into the atmosphere, thus aecting the surface temperature. However, the energy partitioning between the radiative and turbulent components is poorly constrained by energy and mass balances alone. We use a simple energy balance model with the thermodynamic limit of maximum power as an additional constraint to determine this partitioning. Despite discrepancies over tropical oceans, we nd that the broad variation of heat uxes and surface temperatures in the ERA-Interim reanalysed observations can be recovered from this approach. The estimates depend considerably on the formulation of longwave radiative transfer and a spatially uniform oset is related to the assumed cold temperature sink at which the heat engine operates. Our results suggest that the steady state surface energy partitioning may reect the maximum power constraint Turbulent heat uxes are treated as the result of a heat engine operating between the surface and the atmosphere. Turbulent heat uxes are determined by maximizing the mechanical power output as an additional thermodynamic constraint. Despite discrepancies over tropical ocean, broad patterns of turbulent fluxes and temperatures of ERA-Interim can be recovered.