
TLab User Guide

TMP group

Max Planck Institute for Meteorology, Hamburg

August 19, 2015

Contents

Preface v

1 Governing equations 1
1.1 Compressible formulation . 1

1.1.1 Multi-species compressible flows . 2
1.1.2 Multi-species compressible reacting flows . 2

1.2 Incompressible formulation . 3

2 Numerical Algorithms 5
2.1 Spatial operators . 5

2.1.1 Derivatives . 5
2.1.2 Advection and Diffusion . 9
2.1.3 Filters . 9
2.1.4 Fourier transform . 9
2.1.5 Poisson equation . 10
2.1.6 Helmholtz equation . 10

2.2 Time marching schemes . 10
2.2.1 Explicit schemes . 11
2.2.2 Implicit schemes . 14

3 Boundary and Initial Conditions 17
3.1 Background profiles . 17
3.2 Initial conditions . 18
3.3 Boundary conditions . 19

3.3.1 Compressible formulation . 19
3.3.2 Incompressible formulation . 19
3.3.3 Buffer zone . 19

4 Post-Processing Tools 21
4.1 Averages . 21
4.2 Probability Density Functions . 21
4.3 Conditioning . 21
4.4 Two-point Statistics . 21
4.5 Summary of Budget Equations for Second-Order Moments 22

4.5.1 Reynolds Stresses . 22
4.5.2 Energy Equation . 24
4.5.3 Scalar Variance . 25

5 Parallelization 27
5.1 Domain decomposition . 27

6 Code 31
6.1 Executables . 31
6.2 Input file dns.ini . 32

iii

7 Grid 37
7.1 Segments . 37
7.2 Explicit mappings (opts 5 and 6) . 38
7.3 Geometric progression algorithm (opts 4) . 38

8 Scaling 41
8.1 Scaling on the cluster jugene@fz-juelich.de . 41

8.1.1 Strong Scaling . 42
8.1.2 Scaling from 32 to 8192 nodes . 42

8.2 Scaling on the cluster blizzard@dkrz.de . 46

Preface

This document has been derived from the DNS/CHEM document, originally created at
the Computational Fluid Dynamics Laboratory at UC San Diego between 1999 and 2004
(http://www.cfdlab.ucsd.edu/). The work has been resumed at the Max Planck Institute for
Meteorology since 2010 within the research group Turbulent Mixing Processes in the Earth System
(http://www.mpimet.mpg.de/).

This manual is simply an introduction to the methodology and code, just a small part of the doc-
umentation of the set of tools DNS/TMP. The major part of the documentation is in the code
itself in terms of README files, git version control system and comments within the source files.
A set of examples has also been included for the user to get acquainted with the different tools
(pre-processing, simulation and post-processing). Please note that, by default, all the different tools
are continuously under development, so this document is continuously incomplete – the comments
within the source files have always priority.

The aim of the set of tools DNS/TMP is to solve a particular set of governing equations with a
controlled accuracy and efficiently. The accuracy can be controlled in different ways: comparing
with analytical solutions, including linear stability analysis; grid convergence studies; balance of
transport equations, like integral turbulent kinetic energy or local values at specific relevant locations
(e.g., at the wall). Resolution can be measured by the ratio between the grid spacing ∆x and the
relevant small scales, like the Kolmogorov scale η or the thickness of the diffusion sub-layers next to
the wall. For the compact schemes used here, typical values are ∆x/η ' 1 − 2; larger values can
lead to numerical instability because of the aliasing generated by the non-linear terms. Note that
these schemes are non-monotone, but typical out-of-bounds deviations of conserved scalars are below
10−6 − 10−8 relative to the mean variations, and this error is therefore negligibly small compared to
the typical error associated with the statistical convergence, of the order of 1− 5%. The statistical
convergence can be estimated by varying the sample size of the data set, e.g. varying the domain
size along the statistically homogeneous directions. The efficiency can be measured in different ways
but, ultimate, it should be related with the computational time needed to understand a particular
problem with a given accuracy, and so the importance of the controlled accuracy. Making the code
user-friendly comes after the previous two main priorities: controlled accuracy and efficiency.

Regarding the content of this document, the first chapter describes the mathematical formulation,
in particular, the governing equations. The boundary and initial conditions are relatively simple for
the geometries that we use and the major complexity in them is the actual implementation – this
is deferred to chapter 3. Chapter 2 cover some major aspects of the numerical algorithms; details
thereof, however, are to be found in the papers that are referred to in that part. The parallelization
is discussed in chapter 5. So far, this includes only the domain decomposition. Chapter 6 covers the
code structure itself and the input data. As already mentioned, this part should be complemented
with the examples included in the directory. Last, scaling studies are included in chapter 8.

v

1 Governing equations

1.1 Compressible formulation

The energy equation is written in terms of the specific internal energy (sensible plus formation).
Viscosity, thermal conductivity, diffusivity and the specific heat ratio can depend on the temperature.
The equation of state corresponding to an ideal gas is assumed.

∂tρ = −∂k(ρuk)

∂t(ρui) = −∂k(ρuiuk)− ∂ip +Re−1∂kτik

+Fr−1gi b+ Ro−1ρεijkfkuj

∂t(ρe) = −∂k(ρeuk) +Re−1Pr−1∂k (λ∗∂kT)

−(γ0 − 1)M2 p ∂kuk + (γ0 − 1)M2Re−1 φ

∂t(ρζi) = −∂k(ρζiuk) −Re−1Sci
−1∂kjik

(1.1)

with

τij ≡ µ∗ [∂jui + ∂iuj − (2/3) ∂kuk δij] , φ ≡ τij∂jui , jik ≡ −(ρD)∗i ∂kζi (1.2)

and
µ∗ = Tnµ , λ∗ = Tnκ , (ρD)∗i = TnD,i (1.3)

and
p = (γ0M

2)−1ρT . (1.4)

The specific heat ratio, γ, is constant and equal to the reference value γ0 = 1/(1−R0/Cp0) and the
dimensionless numbers are defined using the reference scales L0, U0, ρ0 and T0 in the usual way,

Re =
ρ0U0L0

µ0
Pr =

µ0

(λ0/Cp0)
Sci =

µ0

ρ0Di0

and

M =
U0√
γ0R0T0

and

Fr =
U2

0

gL0
Ro =

U0

L0f
.

The body force is expressed in terms of the body force function be(ρ, e, ζj) and needs to be provided;
the simplest case, be = ρ. The vectors gi and fi need to be provided and should be unitary, so that
the magnitude of the vector is complete determined by the corresponding non-dimensional number.
In this compressible case, the centrifugal term should probably be included; not yet studied.

1

CHAPTER 1. GOVERNING EQUATIONS

1.1.1 Multi-species compressible flows

∂tρ = −∂k(ρuk)

∂t(ρui) = −∂k(ρuiuk)− ∂ip +Re−1∂kτik

+Fr−1gi b+ Ro−1ρεijkfkuj

∂t(ρe) = −∂k(ρeuk) +Re−1Pr−1∂k [(λ/Cp)
∗∂kh]

+Re−1Pr−1∂k
[∑(

Lei
−1(ρD)∗i − (λ/Cp)

∗)hi∂kYi]
−(γ0 − 1)M2 p ∂kuk + (γ0 − 1)M2Re−1 φ

∂t(ρζi) = −∂k(ρζiuk) −Re−1Sci
−1∂kjik

(1.5)

and
µ∗ = Tnµ , (λ/Cp)

∗ = Tnκ , (ρD)∗i = TnD,i (1.6)

and
Sci = LeiPr (1.7)

and

Yi = Y e
i (ζj) ,

N∑
1

Yi = 1 (1.8)

h =
N∑
1

hiYi , hi = ∆h0
i +

∫ T

T0

Cpi(T)dT , e = h− γ0 − 1

γ0

T

W
(1.9)

Cp =
N∑
1

Cpi(T)Yi , γ =
WCp

WCp − γ0−1
γ0

,
1

W
=

N∑
1

Yi
Wi

(1.10)

and

p = (γ0M
2)−1 ρT

W
(1.11)

It can be verified that given all the thermo-chemical properties of the components of the mixture
as a function of temperature, the previous set of equations are closed. Notice that γ is no longer a
constant and depend on the composition of the mixture.

The functions Y e
i (ρ, e, ζj) need to be provided. The total number of species is N , need not be equal

to the total number of scalars transported. (If you want, one set is prognostic variables and the other
one is diagnostic variables.) This includes the simplest possible case of Y e

i = ζi. Another case is
equilibrium, e.g. Burke-Schumann approximation, where mass fraction of all species is related to the
mixture fraction variable, ζ. In this case, the functions Y e

i (Z) are smoothed around Zs to reduce the
strength of the discontinuity [Higuera and Moser, 1994]. The restriction of unity Lewis number the
extra conditions nµ = nκ = nD and Sc = Pr. These relationships are obtained by assuming equal
diffusivity of all species and a single-step infinitely fast chemical reaction. For further discussion on
the formulation see Williams [1985].

1.1.2 Multi-species compressible reacting flows

Add reaction terms to the scalar equations

∂t(ρζi) = −∂k(ρζiuk) −Re−1Sc−1
i ∂kjik +Daiwi (1.12)

and Dai are the Damköhler numbers. A reaction mechanism needs to be given to obtain wi(ρ, e, ζj).

2

CHAPTER 1. GOVERNING EQUATIONS

1.2 Incompressible formulation

The Boussinesq approximation is used:

0 = −∂kuk

∂tui = −∂k(uiuk)− ∂ip +Re−1 ∂k (µ∗∂kui) +Fr−1 gi b+ Ro−1 εijkfk uj

∂tζi = −∂k(ζiuk) +Re−1Sc−1
i ∂k (µ∗∂kζi) +Daiwi

(1.13)

The body force is now the buoyancy and the buoyancy function be(ζi) needs to be provided. The
buoyancy function is assumed to be normalized by a reference buoyancy (acceleration) b0 so that
Fr = U2

0 /(b0L0). (Note that non-dimensional numbers represent the relative magnitude of physical
processes and thus they are positive semi-definite; the sign or direction associated with the process,
if any, in indicated in the corresponding parameters.)

So far, only the case µ∗ = 1 in the equations above has been implemented.

Because of the decoupling between the momentum and the internal energy evolution equations, one
of the scalar equations can correspond to the internal energy equation; reaction or phase change
processes, as well as radiation processes, can then be formulated as the appropriate source terms
DaLwL and DaRwR, respectively, in the corresponding scalar equation. Note that the physical
meaning of the corresponding (generalized) Damköhler numbers DaL and DaR is a non-dimensional
heat parameter, and not a timescale ratio – which is the correct meaning of the Damköhler numbers
appearing in the evolution equations for the components in a compressible mixture. We maintain
this inconsistency, instead of introducing new symbols and variables, for code simplicity.

Some scalars can be diagnostic and not prognostic variables, so that there is no evolution equa-
tion associated with them. One common example is liquid content in a moist air formulation as-
suming phase equilibrium. The two global variables inb scal and inb scal array accounts for
that possibility. In principle, this should be specified through the variable imixture. The routine
thermodynamics/thermo initialize defines the mixture properties. The average statistical data
is calculated for all of them, prognostic and diagnostic variables.

Different expressions for the buoyancy and the Coriolis terms are possible depending on the geometry
and the definition of the (kinematic) modified pressure.

For the buoyancy (see routine flow/flow buoyancy), the most common expressions are a linear or
bilinear relation to the scalar fields as

be = [α0+] α1ζ1 [+α2ζ2] , (1.14)

where the coefficients αi need to be provided. A quadratic form

be = −4α0

α2
1

ζ1(ζ1 − α1) , (1.15)

is also available, so that the maximum buoyancy α0 is achieved at ζ1 = α1/2.

Another option is a piece-wise linear function

be =
α2

α3
ζ1 +

(
α1 − α2

1− α3
− α2

α3

)
α4 ln

[
exp

(
ζ1 − α3

α4

)
+ 1

]
. (1.16)

The first linear branch of this function varies between be = 0 at ζ1 = 0 and be = α2 at ζ1 = α3;
the second linear branch varies between be = α2 at ζ1 = α3 and be = α1 at ζ1 = 1. The first-order

3

CHAPTER 1. GOVERNING EQUATIONS

discontinuity at ζ1 = α3 is smoothed over an interval α4 in the ζ1-space. This expression can be
written as

be = β1 ζ1 + β2 (`− 1) , β1 =
α1 − α2

1− α3
, β2 =

α3α1 − α2

1− α3
,

` =
α4

α3
ln

[
exp

(
α3 − ζ1

α4

)
+ 1

]
,

(1.17)

where the symbols βi relate to those used in Stevens (2002) according to β1 ≡ δdb, β2 ≡ gβ`q`,max,
normalized with an appropriate buoyancy scale. (α1 ≡ δdb− gβ`q`,max, α3 ≡ gβ`q`,max/(δdb− δmb),
and α2 ≡ α3δmb.) The piece-wise linear function reduces to a linear function when β2 = 0.

The last case is the piece-wise bilinear expression

be = β1 ζ1 + β2 (`− 1) + α5 ζ2 ,

` =
α4

α3
ln

[
exp

(
α3 − ζ1 − α3β6 ζ2

α4

)
+ 1

]
, β6 = α6α5/β2 ,

(1.18)

which reduces to the previous piece-wise linear in the case α5 = α6 = 0. (The reason to express the
buoyancy in terms of the parameter α6 instead of directly in terms of β6 is that we also need α6 for
the analysis of the source term of the buoyancy evolution equation.)

Note that the buoyancy field is always treated as a diagnostic variable and the average statistical
data – actually from the momentum source term Fr−1b – is calculated as an additional scalar field
on top of inb scal array scalars (prognostic plus diagnostic). The only exception occurs when
the buoyancy function is merely a linear relation because, in that case, the corresponding statistical
information can be easily obtained from the corresponding scalar field.

In case of the Coriolis force term, the case that is currently implemented in that of an Ekman layer
forming when a flow in geostrophic balance if bounded by a (smooth) solid wall perpendicular to the
angular velocity vector. The direction Ox2 is defined along the angular velocity, so that f1 = f3 = 0.
The momentum equation reads then

∂tu1 = −∂k(u1uk)− ∂1p +Re−1 ∂k (µ∗∂ku1) +Fr−1 g1 b+ Ro−1 f2 (u3,g − u3)

∂tu2 = −∂k(u2uk)− ∂2p +Re−1 ∂k (µ∗∂ku2) +Fr−1 g2 b

∂tu3 = −∂k(u3uk)− ∂3p +Re−1 ∂k (µ∗∂ku3) +Fr−1 g3 b+ Ro−1 f2 (u1 − u1,g)

(1.19)

The geostrophic velocity vector (u1,g, u2,g, u3,g) = (cosα, 0, − sinα) is defined in terms of the
input parameter α (rotation angle around Ox2), to be provided.

Radiation heating or cooling can be considered as an additional source term DaR r δiβ in the right-
hand side of one of the evolution equations, where DaR is the corresponding non-dimensional heat
parameter and the radiation function re(ζj), to be provided, is normalized by the corresponding
(dimensional) heat parameter Q. So far, DaR = 1 (to be added at the end of the input list of
the Damköhler numbers?). One possible formulation is a one-dimensional bulk model (see routine
flow/flow radiation), which is represented by radiation functions of the form

re = α0ζγ exp

[
−α−1

1

∫ ∞
z

ζγ(z′) dz′
]
. (1.20)

The scalar indeces {β , γ} and the parameters {α0 , α1} need to be provided. Default values are
β = 1 and γ =inb scal array. The scalar fields can be average profiles, instead of instantaneous
values, and non-linear mapping functions can be specified.

4

2 Numerical Algorithms

The system of equations is written as

∂q

∂t
= f q(q, s, t) ,

∂s

∂t
= f s(q, s, t) , (2.1)

where q and s are the flow and scalar vectors. For the compressible formulation,

q = (ρ, ρu1, ρu2, ρu3, ρe)
T , s = (ρs1, ρs2, . . .)

T , (2.2)

and f q and f s are the corresponding right-hand side of the equations. The energy equation can be
also solved in terms of the total energy per unit volume ρ(e + v2/2) instead of the internal energy
per unit volume ρe. If the incompressible equations are solved, then

q = (u1, u2, u3)T , s = (s1, s2, . . .)
T . (2.3)

The basic formulation is the method of lines, so that the algorithm is a combination of different
spatial operators needed to calculate the right-hand side of the equations (typically, derivatives) and
a time marching scheme. An implicit treatment of the diffusive terms in the incompressible case has
also been implemented.

2.1 Spatial operators

Spatial operators are based on finite difference methods (FDM). There are two levels of operator
routines. The low-level libraries contains the basic algorithms and is explained in this section. It
consists of the FDM kernel library fdm and three-dimensional operators in the operators library.
(The latter is still part of the general dns library but it should be migrated into its own operators

library. The file name starts, generally, with opr .) The high-level library fields is composed of
routines that are just a combination of the low-level routines.

2.1.1 Derivatives

Spatial derivatives are calculated using fourth- or sixth-order compact Padé schemes as described by
Lele [1992] and extended by Shukla and Zhong [2005] for non-uniform grids. The routines PARTIAL X,
PARTIAL Y and PARTIAL Z, and correspondingly PARTIAL XX, PARTIAL YY and PARTIAL ZZ manage
these operations. The kernels of the specific algorithms are in the library fdm.

We restrict ourselves to the 5-point stencils

a−1s
′
j−1 + a0s

′
j + a+1s

′
j+1 =

1

h
(b−2sj−2 + b−1sj−1 + b0sj + b+1sj+1 + b+2sj+2) , (2.4)

and similarly for the second-order derivative, where the components of the n-dimensional vectors
s = (sj), s′ = δxs = (s′j) and s′′ = δxxs = (s′j) are, respectively, approximations to the values
{s(xj) : j = 1, . . . , n} of a function s(·) defined on a finite interval [x1 , xn] and its first- and

5

CHAPTER 2. NUMERICAL ALGORITHMS

second-order derivatives evaluated at those same points {xj}. The coefficients for the first-order
derivative are given in table 2.1. Global schemes are constructed as a combination of n of these
formulae, using biased finite differences at the boundaries in case of non-periodicity. We define the
global algorithm (35653) by using the centered scheme C6 at the (n − 4) interior points, and the
biased schemes B5 at j = 2 and B3 at j = 1 with the corresponding symmetric counterpart at
j = n− 1 and j = n, respectively Carpenter et al. [1993]. Those global schemes can be represented
as

A1 δxs = (1/h)B1 s , A2 δxxs = (1/h2)B2 s (2.5)

where h = (xn − x1)/(n − 1) is a reference space step and the square matrices A = (aij) and
B = (bij) are narrow banded, namely, tri-diagonal and penta-diagonal, respectively. (At the boundary
points, 1 or 2 additional points in the right-hand sides can be used to increase the order, which in
theory increases the bandwidth of the matrices. However, it can be handled locally without a
penalty in memory requirements nor computational time.) If periodic boundary conditions are used,
these are imposed at xn+1 and not at xn, i.e. s(xn+1) = s(x1). The size of the domain is then
L = n(xn−x1)/(n−1) = nh instead of xn−x1 = (n−1)h, and we do not save the information at
xn+1. The matrices A and B are then circulant instead of banded. In any of both cases, standard
Thomas’ algorithm is used to solve those linear systems efficiently. In particular, an LU decomposition
is performed during the initialization and equations can be normalized such that the right-hand side
contains always at least one diagonal of just ones, so as to save memory and computational time (see
routine fdm initialize). Conceptually, it is sometimes advantageous to think about equation (2.5)
as the definition of linear finite-difference operators δx : <n → <n, s′ = δxs = (1/h)(A−1

1 B1)s, and
δxx : <n → <n, s′′ = δxxs = (1/h2)(A−1

2 B2)s. Then, we can use some results from linear algebra
[Mellado and Ansorge, 2012].

a−1 a0 a+1 b−2 b−1 b0 b+1 b+2 t

C2 0 1 0 0 −1/2 0 1/2 0 1/3! h
2s(3)

C4 1/4 1 1/4 0 −3/4 0 3/4 0 −1/5! h
4s(5)

C6 1/3 1 1/3
−1/36

−7/9 0 7/9
1/36

4/7! h
6s(7)

B1 0 1 0 0 0 -1 1 0 1/2! h s(2)

B3 0 1 2 0 0 −5/2 2 1/2
−2/4! h

3s(4)

B5 1/6 1 1/2 0 −10/18
−1/2 1 1/18

−2/6! h
5s(6)

Table 2.1: Coefficients of the finite-difference formulae (2.4). The first three rows are centered differences, the last
three are biased differences. The matrix A1 in (2.5) is constructed in terms of the coefficients {ai}, the matrix B1 in
terms of {bi}. The last column contains the leading order term of the local truncation error defined by (2.6).

The local truncation error of the FDM approximation to the first-order derivative in (2.5) is defined
by

t1 =
1

h
B1

 s(x1)
...

s(xn)

−A1


ds
dx(x1)

...
ds
dx(xn)

 , (2.6)

which yields ε = −A−1
1 t as the discretization errors {εj = ds/dx(xj) − s′j : j = 1, . . . , n}. The

explicit expression for the components of t can be found in table 2.1. Similarly for the second-order
derivative, vector t2 (to be written).

For notational convenience in the following discussion on Fourier analysis, we change the index so
that it varies between j = 0 and j = n − 1. We can define a new sequence of numbers {ŝk}n−1

0

from {sj}n−1
0 by

ŝk =
1

n

n−1∑
0

sj exp(−iωkj) , sj =

n−1∑
0

ŝk exp(iωkj) , (2.7)

6

CHAPTER 2. NUMERICAL ALGORITHMS

where {ωk = (2π/n)k : k = 0, . . . , n− 1} is the scaled wavenumber and i =
√
−1 is the imaginary

unit. We use the library FFTW in the code for this transformation 1. Note that ŝk+n = ŝk because
exp(−i2πj) = 1 for any integer number j, so that we can write

sj =

n/2∑
−n/2+1

ŝk exp[iωkj] . (2.8)

The expression above coincides with the Fourier series
∑n/2
−n/2 ŝk exp[iκkx] of the function s(x) over

the interval [0, L] particularized at the grid points {xn} provided that the spectral content of the
function s(x) beyond the Nyquist frequency κn/2 = (2π/L)(n/2) = 2π/(2h) = π/h is zero. Then
we have the relation κkh = ωk between the wavenumber κk = (2π/L)k and the scaled wavenumber
ωk. In principle, both {ŝk} from {sj} are complex numbers; however, the sequence {ŝk} is typically
real and we only need to know the Fourier modes between k = 0, the mean value, and k = n/2, the
Nyquist frequency, because of the symmetry. Then, ωk varies between 0 and π and κk varies between
0 and π/h. A third quantity sometimes used in the discussion is the number of points per wavelength
PPWk = (L/k)/h = 2π/ωk; for a given wavelength L/k, or wavenumber κk, reducing the grid step
h and thus increasing resolution – increasing PPWk – means reducing the scaled wavenumber ωk
towards zero.

The previous framework allows us to understand the FDM using the so-called von Neumann analysis.
We know that the exact values of {s′j} and {s′′j } under the conditions stated above are

s′(xj) =

n−1∑
0

(iωk/h)ŝk exp(iωkj) , s′′(xj) =

n−1∑
0

(−ω2
k/h

2)ŝk exp(iωkj) , (2.9)

having simply used the previous relation κk = ωk/h. The FDM approximations can be written as

s′j =
n−1∑

0

(λ1/h)ŝk exp(iωkj) , s′′j =
n−1∑

0

(λ2/h
2)ŝk exp(iωkj) . (2.10)

The deviation of the complex functions λ1(ω) and λ2(ω) from the exact values iω and −ω2 measures
the FDM discretization error (see figure 2.1). One possible way to quantify this error is by means of
the resolving efficiency, defined as the number of points per wavelength PPW required to maintain
errors in the corresponding transfer function below a specified level (or, equivalently, a specified error
in the dispersion velocity of the linear advection problem). In these terms, for the first-order derivative,
an error of 1% requires 4 PPW in the case of the implicit compact scheme used in the DNS, whereas
the second-order explicit central scheme requires 25 PPW [Lele, 1992, Lomax et al., 1998]. This
difference is even higher if the common reference error of 0.1% is retained, for which the previous
finite difference schemes require 6 PPW and 100 PPW, respectively. The corresponding resolution
requirements for the second-order derivative using a compact scheme are similar to those of the first-
order derivative; the second-order central explicit FDM improves slightly and only needs 18 PPW for
1% error and 67 PPW for 0.1% error. (These errors in the transfer function can be understood as
errors in the exponential rate of decrease of a given wave caused by the diffusion operator.) However,
these are theoretical values based on linear analysis of the algorithm and resolution studies are always
required to ascertain this error. Last, we also note that, as we increase resolution, h decreases and
ωk moves towards the origin in figure 2.1 for a fixed wavenumber κk; the departure at the origin of
the approximation from the exact value gives then the order of the FDM.

It is also useful to use the notation

ŝ = W s s = W−1ŝ . (2.11)

1visit http://www.fftw.org/

7

CHAPTER 2. NUMERICAL ALGORITHMS

Figure 2.1: Modified wavenumbers of the FDM approximations s′ and s′′ to the first- and second-order derivatives,
left (red) and right (blue), respectively. (Equivalently, transfer functions associated to the linear operators δx : A−1

1 B1

and δxx : A−1
2 B2.) Black lines indicate the exact value and light colors indicate the second-order central FDM. The red

line in panel (b) corresponds to the operator δxδx = (A−1
1 B1)2. The interval [−π, 0 is simply the anti-symmetric and

symmetric extension of the curves in panels (a) and (b), respectively. The number inside the figure give the maximum
values, to be considered in the time-marching scheme.

for the discrete Fourier transform (DFT) defined by equation (2.7), where W is the DFT matrix.
Let us consider the first-order derivative in equation (2.5). Then, we can write

ŝ′ = W s′ = [(1/h)W (A−1
1 B1)W−1)W s = (1/h)Λ1ŝ . (2.12)

From this relation between the vectors ŝ′ and ŝ and equation (2.10), we deduce that the array Λ1

is diagonal with {λk}n−1
0 as diagonal elements. Moreover, since W is invertible, W represents just

a similarity transformation – a change of base – and therefore we know that the matrices A−1
1 B1

and Λ1 have the same eigenvalues. Hence, {λk}n−1
0 is simply the set of eigenvalues of A−1

1 B1;
figure 2.1 shows the curve through the imaginary part of half of them. In the complex plane, the
numbers {λ1,k}n−1

0 corresponding to the first-order derivative move in the imaginary axis, and the
numbers {λ2,k}n−1

0 corresponding to the second-order derivative move in the negative part of the
real axis. This exercise might not be relevant for the periodic case because we can obtain {λk}n−1

0

easily by substituting equation (2.7) into equation (2.4), but it is clarifying for the non-periodic cases
because the equivalent of figure 2.1 is simply the spectrum of A−1

1 B1, in general, a set of points in
the complex plane.

It is also interesting to note that one option to calculate the FD approximation to the second-order
derivative is always δxδxs = (A−1

1 B1)2, that is, to apply consecutively twice the FD approximation
to the first-order derivative. However, the spectral transfer function of the FD operator δxδx falls to
zero at the Nyquist frequency, as shown in figure 2.1, which results in a very poor representation of
the diffusion terms at the high wavenumbers. This property can become very important because the
errors derived from the aliasing in calculating the non-linear terms accumulate and the use of filter
might become unavoidable in order to have stable simulations. Hence, it is advisable to use a direct
discretization of the second-order derivative operator.

Last, a uniform grid {xj = x1 +(j−1)h : j = 1, . . . , n} has been considered so far. If a non-uniform
grid {xj : j = 1, . . . , n} is employed instead, we can define x′ = (1/h)A−1

1 B1x from the mapping
between the computational and the physical domains and the calculation of the approximation δxs

8

CHAPTER 2. NUMERICAL ALGORITHMS

to the first-order derivative is given by

(A1D1) δxs = (1/h)B1s , (2.13)

that is, A should be replaced by AD1, where D1 = diag(x′) is a diagonal matrix with {x′j} as
diagonal elements. Similarly, for the FD approximation to the second-order derivative, we obtain

(A2D2) δxxs = (1/h)B2s− (A2D
2
1) δxs , (2.14)

where D2 = diag(x′′) is again a diagonal matrix with {x′′j } as diagonal elements; these elements are

the components of the vector x′′ = (1/h2)A−1
2 B2x. As a result of using this Jacobian formulation

for non-uniform grids, we need to calculate the approximation to the first-order derivative in order to
calculate δxxs. In general, that is not a problem because we need both, the first- and the second-order
derivatives, in all the transport equations.

A direct formulation of compact FD approximation to the second-order derivative for non-uniform
grids is needed, however, when using the implicit temporal scheme for the diffusion terms in order
to solve exactly the corresponding Helmholtz equations, without any approximation. Such a direct
formulation leads to the system form (2.5). We followed Shukla and Zhong [2005].

2.1.2 Advection and Diffusion

The non-linear advection terms can be formulated in conservative, convective and skew-symmetric
forms [Blaisdell et al., 1996, Kravchenko and Moin, 1997]. The molecular transport terms can be
formulated in the conservative and non-conservative forms (this latter if transport coefficients are
constant).

In the convective formulation, the routines OPR BURGERS * combine the first and second-order deriva-
tive operators as

f = Re−1s′′ − us′ (2.15)

where s is a scalar field and u a velocity field. The combination reduces transpositions, either locally
or across processors. The reason is that, in general, we need 2 transpositions for s′′, forward and
backward, and similarly for s′, which amounts to 4 transpositions. In the the combined form, we
need 1 forward transposition for s and 1 for u, and then 1 backward transposition for the result f .
In total, 3 transpositions. The addition and multiplication operations are done in transposed space.
If u = s, then it is only 2 transpositions that we need. When u 6= s, then the transposed velocity
needs to be passed through the arguments in case it is needed.

2.1.3 Filters

See file dns/opr filter. The kernels of the specific algorithms are in the library filters. Used in
previous version for long-term stability, now mainly used for post-processing and large-eddy simula-
tions.

2.1.4 Fourier transform

See file dns/opr fourier. It is based on the FFTW library and it has been already discussed in
the previous section (see text around equation (2.7)). It is used in the pre-processing (generation of
the initial random field), in the post-processing (spectral analysis), and also during the simulation
(Poisson and Helmholtz solvers).

9

CHAPTER 2. NUMERICAL ALGORITHMS

The Fourier transform is applied by default to an array imax total×(jmax total+2)×kmax total.
The reason to add two additional planes {jmax total+1,jmax total+2} is that we need them for
the boundary conditions of the Poisson equations, and we make that the standard procedure. If not
needed, then these two planes contain simply zeros.

The sequence of transformations is Ox → Oz → Oy. The transformed field contains the Nyquist
frequency, so it needs an array (imax total/2+1)×(jmax total+2)×kmax total of complex num-
bers.

Given the scalar field s, the power spectral density {E0, E1, . . . , EN/2} is normalized such that

〈s2〉 = E0 + 2

N/2−1∑
0

En + EN/2 . (2.16)

The mean value is typically removed, such that the left-hand side is s2
rms. The Nyquist frequency

energy content EN/2 is not written to disk, only the N/2 values {E0, E1, . . . , EN/2−1}.

2.1.5 Poisson equation

See file dns/opr poisson. Given the scalar field s, obtain the scalar field f such that

∇2f = s , (2.17)

complemented with appropriate boundary conditions. The current version only handles cases with
periodic boundary conditions along Ox and Oz. It performs a Fourier decomposition along these
two directions, to obtain the a set of finite difference equations along Oy of the form

δxδxf |j − (λ1/h)2f |j = s|j , j = 2, . . . , n− 1 , (2.18)

λ1 ∈ <, where boundary conditions need to be provided at j = 1 and j = n. The algorithm is
described in Mellado and Ansorge [2012]. These routines are in the source file dns/opr fde pool.

2.1.6 Helmholtz equation

See file dns/opr helmholtz. Given the scalar field s, obtain the scalar field f such that

∇2f + αf = s , (2.19)

complemented with appropriate boundary conditions. The current version only handles cases with
periodic boundary conditions along Ox and Oz. The algorithm is similar to that used for the Poisson
equation. It performs a Fourier decomposition along these two directions, to obtain the a set of finite
difference equations along Oy of the form

δxxf |j − (λ2/h
2 − α)f |j = s|j , j = 2, . . . , n− 1 , (2.20)

λ2 ∈ <, where boundary conditions need to be provided at j = 1 and j = n. The difference is
that, for the Helmholtz equation, we also include the case in which the second-order derivative is
implemented in terms of the δxx FDM operator, not only the δxδx FDM operator.

2.2 Time marching schemes

See file tools/dns/time rungekutta. The time advancement is based on Runge-Kutta methods
(RKM).

10

CHAPTER 2. NUMERICAL ALGORITHMS

2.2.1 Explicit schemes

We can use three- or five-stages, low-storage RKM that gives third- or fourth-order accurate temporal
integration, respectively [Williamson, 1980, Carpenter and Kennedy, 1994]. The essential feature is
that only two levels are needed at a time, reducing thereby the number of three-dimensional arrays
compared to the convectional Runge-Kutta schemes. In particular, the implementation is

h = 0

h← h +f(s, t+ CMτ)
s ← s +BMτ h
h← AM h

M times,

where M = 3 or M = 5, C1 = 0 and we do not need the last step for the last stage. The stability
properties for the biased finite difference schemes are considered in Carpenter et al. [1993]. The
incompressible formulation follows Wilson et al. [1998].

The analysis of the dissipative and dispersive errors associated with the RKM are based on linear
analysis, assuming that the right-hand side can be diagonalized to reduce the problem to a set of
ODEs of the form

ds

dt
= λs , (2.21)

where s can be a complex function (of the real variable t) after the diagonalization of the original
system (2.1), and λ is the corresponding eigenvalue, a complex number. Given the initial condition
sn at tn, the RKM provides an approximation sn+1 to s(tn+1), where the time step is τ = tn+1− tn.
The ratio provides the amplification factor r = sn+1/sn. The exact amplification factor is exp(λτ),
whereas that from the discrete method is

r = 1 +

p∑
1

ck(λτ)k , (2.22)

the coefficients depending on the RKM method and p being the number of stages. The region of
absolute stability is the region of the complex plane λτ for which |r| < 1. In addition, we can
compare the approximation with the exact value

r

exp(λτ)
= ρ exp(iθ) , (2.23)

such that ρ(λ) and θ(λ) represents the dissipation (or amplitude) and the dispersion (or phase) error,
respectively [Hu et al., 1996].

Figure 2.2 shows the stability region along with the dissipation and dispersion errors for the fourth-
order five-step Runge-Kutta method that we use in the code, for which

r = 1 +

4∑
1

1

k!
(λτ)k +

1

200
(λτ)5 . (2.24)

The equation above shows the forth-order accuracy, since the first term deviation from the Taylor
series of the exponential function is proportional to (λτ)5. (The five zeros of this polynomial are
enclosed by the light blue closed regions in panel (a).) Also, The crossing points of the boundary of
the stability region with the real and imaginary axis are (λτ)r ' −4.65 and (λτ)i ' ±3.34. These
numbers are important to determine the maximum CFL numbers associated with the advection-
diffusion equation, which is the basis for many non-reacting flows (a source term adds an additional

11

CHAPTER 2. NUMERICAL ALGORITHMS

Figure 2.2: Dissipation error (left) associated with the fourth-order explicit Runge-Kutta scheme: dark blue, 0.99 <
ρ < 1; light blue, 0.90 < ρ < 0.99; dark red, 1 < ρ < 1.01; light red, 1.01 < ρ < 1.10. Dispersion error (right)
associated with the Runge-Kutta scheme: dark blue, −0.01 < θ/π < 0; light blue, −0.10 < θ/π < −0.01; dark red,
0 < θ/π < 0.01; light red, 0.01 < θ/π < 0.10. Black contour line indicates the stability region

constraint for stability). For instance, assuming periodic boundary conditions for simplicity, we can
diagonalize the original system to the set of equations

ds

dt
= (iuλ1/h− νλ2/h

2)s , (2.25)

according to the eigenvalue analysis discussed in section 2.1.1. In the expression above, u is a
constant representing an advection velocity and ν is the viscosity. The expression in parenthesis is
λ and it needs to fall within the stability region shown in figure 2.2 for the algorithm to be stable.
Then, we obtain the conditions

ντ

h2
<
|(λτ)r|
maxλ2

,
cτ

h
<
|(λτ)i|
maxλ1

. (2.26)

The left-hand side in the expressions above are the CFL numbers CFLd and CFLa for the diffusion and
the advection operators, respectively, and the right-hand side provide the upper bounds CFLd,max =
0.68 and CFLa,max = 1.68 having used for maxλ2 and maxλ1 the values shown in figure 2.1.

However, in addition to stability, a relatively small error is also desired. Figure 2.2 shows the
dissipation and dispersion parts of it separately, as obtained from its definition in (2.23). Dark
colors indicate the regions of the complex plane where the eigenvalues of the operators need to fall
in order to have less that 1% error; light colors correspond to less that 10% error. That figure
explains the reason to use CFL numbers that are smaller than the maximum allowed. The value
0.7CFLa,max ' 1.2 is used in the code by default, which corresponds to less than 10% error in the
advection operator (imaginary axis). Note however that this error occurs for the wavenumbers in
figure 2.1 at the maximum λ1; wavenumbers corresponding to more than 4 PPW fall approximately

12

CHAPTER 2. NUMERICAL ALGORITHMS

Figure 2.3: Dissipation error (left) associated with the third-order explicit Runge-Kutta scheme: dark blue, 0.99 <
ρ < 1; light blue, 0.90 < ρ < 0.99; dark red, 1 < ρ < 1.01; light red, 1.01 < ρ < 1.10. Dispersion error (right)
associated with the Runge-Kutta scheme: dark blue, −0.01 < θ/π < 0; light blue, −0.10 < θ/π < −0.01; dark red,
0 < θ/π < 0.01; light red, 0.01 < θ/π < 0.10. Black contour line indicates the stability region

within 1% error. The same applies in the real axis for the diffusion operator. The code uses by
default 1/4 of the limit in the imaginary axis, that is, about CFLd < 0.3.

The dissipation and dispersion error maps corresponding to the third-order Runge-Kutta scheme
are shown in figure 2.3. The maximum CFL numbers to guarantee stability for the advection and
diffusion operators are CFLa,max = 1.73/1.989 = 0.871 and CFLd,max = 2.57/6.857 = 0.366,
respectively.

This periodic case is easier because the eigenvalues can be obtained analytically and both the diffusion
and advection operator have the same eigenvectors. In general, as long as the right-hand side of
the equations can be written as the same of linear operators, we would need to make the spectral
decomposition for each of them and make sure that the eigenvalues fall in the stability region of the
boxes in figure 2.2.

For instance, consider the advection equation inside the domain [0, 1] with a positive advection
velocity u and (therefore) the boundary condition imposed at the left boundary x1 = 0, that is

ds/dt|j = −u δxs|j j = 2, . . . , n
s1 = α

}
, u ≥ 0 . (2.27)

We know that δxs = (1/2)A−1
1 B1s, but we only need a relation involving the last n− 1 components

of the vector s, not all of them. This can be obtained by introducing the following block matrices
[Lomax et al., 1998, Mellado and Ansorge, 2012]

A1 =

(
a11 a12

T

a21 A22

)
, B1 =

(
b11 b12

T

b21 B22

)
.

Then, eliminating s′1 in the original system, yields

hAR22

 s′2
...
s′n

 = BR
22

 s2
...
sn

+ s1b
R
21 , (2.28)

13

CHAPTER 2. NUMERICAL ALGORITHMS

Figure 2.4: Spectra of the matrix −{(AR22)−1BR22}
describing the advection operator in problem (2.27)
for two different problem sizes: black, n = 32; ref,
n = 1024. As the number of grid points is increased,
the role of the boundary conditions decrease and the
spectra tends towards that corresponding to periodic
boundary conditions, which is purely imaginary (see
figure 2.1). Note, however, that deviation from the
imaginary axis of the eigenvalues is relatively small
even for the small size n = 32, in the context of
the dissipation- and dispersion-error regions shown in
figure 2.2.

where the (n− 1)× (n− 1) matrices {AR22 , B
R
22} and the column vector bR

21 ∈ <n−1 are

AR22 = A22 −
1

a11
a21a12

T , BR
22 = B22 −

1

a11
a21b12

T , bR
21 = b21 −

b11

a11
a21 . (2.29)

Note that AR22 and BR
22 have the same bandwidths as A and B, respectively. The element s′1 can be

calculated by

s′1 =
1

ha11

(
b11 b12

T
)
s− 1

a11
a12

T

 s′2
...
s′n

 . (2.30)

Then, the original equation can be written as

d

dt

 s2
...
sn

 = −(u/h)(AR22)−1BR
22

 s2
...
sn

+ αbR
21 , (2.31)

so that the set of complex numbers −(uτ/h)eig{(AR22)−1BR
22} have to fall inside the stability region

in figure 2.2. This set of eigenvalues is shown in figure 2.4 for the scheme (35653) used in the
code by default, normalized by the prefactor uτ/h. We see that the spectra is dominated by a form
relatively close to that of the periodic boundary conditions, which was purely imaginary, and the CFL
condition is therefore the same. It happens that some other biased FD formulae at the boundary
points can mode part of the spectra into the positive real part of the complex plane, which would
lead to unstable algorithms [Carpenter et al., 1993].

2.2.2 Implicit schemes

To be developed. See Spalart et al. [1991].

14

CHAPTER 2. NUMERICAL ALGORITHMS

Figure 2.5: Dissipation error (left) associated with the third-order implicit Runge-Kutta scheme: dark blue, 0.99 <
ρ < 1; light blue, 0.90 < ρ < 0.99; dark red, 1 < ρ < 1.01; light red, 1.01 < ρ < 1.10. Dispersion error (right)
associated with the Runge-Kutta scheme: dark blue, −0.01 < θ/π < 0; light blue, −0.10 < θ/π < −0.01; dark red,
0 < θ/π < 0.01; light red, 0.01 < θ/π < 0.10.

The dissipation and dispersion error maps corresponding to the third-order implicit Runge-Kutta
scheme are shown in figure 2.5. The algorithm is unconditionally stable but we need to control
accuracy of the diffusion operator for which it is used. The reference value CFLd = 1.7 as it gets
most of the eigenvalues within the 1%-error region.

15

CHAPTER 2. NUMERICAL ALGORITHMS

16

3 Boundary and Initial Conditions

3.1 Background profiles

The general form is given as a function of the coordinate x2 according to

f(x2) = fref + ∆f g(ξ) , ξ = −
x2 − x2,ref

δ
, (3.1)

where the set of parameters {fref, ∆f, x2,ref, δ} need to be provided, as well a the normalized profile
g(ξ).

Possible forms are given in table 3.1 and figure 3.1. There are shear-like and jet-like profiles. In the
former case, the normalized profiles vary between −1/2 and +1/2, so that equation (3.1) represents
a variation of order ∆f around the reference value fref across a distance of order δ centered around
the position x2,ref. The sign of δ can be used to impose the symmetric form, if needed. The gradient
thickness is defined by

δg =
∆f

|df/dx2|max
= δ

1

|dg/dξ|max
. (3.2)

In the case in which the profile is used to define the mean velocity, this thickness is known as vorticity
thickness. It is very often more convenient to define the problem in terms of the gradient thickness
instead of the thickness parameter δ. The reason to keep it in terms of δ in the code is simply for
compatibility with the previous versions.

The second group of profiles deliver a jet-like shape. In that case, ∆f provides the maximum
difference with respect to the reference level fref. The integral thickness is defined by

δi =
1

∆f

∫
(f − fref) dx2 = δ

∫
g(ξ)d ξ . (3.3)

According the implementation currently used, shown in table 3.1, typical values are 2− 3δ.

Figure 3.1: Different normalized profiles used
in equation (3.1). The black profiles provide
shear-like backgrounds, the green lines provide
jet-like backgrounds. These background pro-
files are used consistently for the boundary and
initial conditions and aims at the study of dif-
ferent canonical flows, free and wall-bounded,
shear- and buoyancy-driven.

17

CHAPTER 3. BOUNDARY AND INITIAL CONDITIONS

Type g(ξ) δg/δ δi/δ Notes

Hyperbolic tangent (1/2) tanh(−ξ/2) 4 Used in shear layer because it is the reference
profile commonly used in linear stability analy-
sis. The parameter δ is equal to the momentum
thickness. Used because of available linear sta-
bility analysis.

Error function (1/2)erf(−ξ/2) 2
√
π Used in diffusion dominated problems because

it is a solution of the diffusion equation.

Linear −ξ 1 Varying ∆f along δ.

Ekman 1− exp(ξ) cos(ξ) 1 Velocity component along geostrophic wind.

− exp(ξ) sin(ξ) Normal component.

Gaussian exp(−ξ2/2) 1.65
√

2π Gaussian bell with standard deviation equal to
δ.

Bickley 1/ cosh2(ξ/2) 4 Bell shape used in the linear stability of jets.
Used because of available linear stability analy-
sis.

Parabolic (1 + ξ/2)(1− ξ/2) 8/3 Parabola crossing the reference value at x2,ref±
2δ. Used for Poiseuille and channel flows. The
thickness δi is calculated using only the positive
part of the profile in the integral.

Table 3.1: Different normalized profiles used in equation (3.1). The third column contains the gradient thickness δg,
defined by equation (3.2), written explicitly as a function of the thickness parameter δ. The fourth column contains
the integral thickness δi, defined by equation (3.3)

3.2 Initial conditions

There are several reasons to construct elaborated initial conditions beyond simply white random
noise. For instance, to ascertain the duration of the initial transient before the flow enters into the
fully developed turbulent regime; we can do that by varying the initial conditions and for that we
need certain control of those initial conditions. We can also control certain aspects of that transient
by using results from stability analysis and exciting or not certain modes; white noise simply excites
all of them equally, and also that higher frequency content is dissipated much faster, which might
render the energy amount that we use in the initialization misleading. In this respect, it maybe
appropriate to say that the control of the duration of that transient is relatively difficult; on the
other hand, the peak of turbulence intensities can be indeed controlled, if necessary e.g. because of
resolution constraints. Third, it provides us with another tool to validate the code and algorithms,
since we can compare results with analytical solutions.

The first step is to defined a mean background profile according to the previous section. For instance,
a hyperbolic tangent profile for the mean streamwise velocity, ū1(x2), while all other mean velocity
components are set to zero. The upper stream has a velocity u1,ref −∆u/2 and the lower stream
has a velocity u1,ref + ∆u/2 (see figure 3.1). The mean density (or the mean temperature) can
be similarly initialized, and a mean pressure is set to a uniform value po. The mean scalar can be
similarly initialized.

In addition to the mean values, broadband fluctuations are used to accelerate the transition to
turbulence. This is achieved by generating a random field on which is imposed an isotropic turbulence
spectrum of one of the following forms,

18

CHAPTER 3. BOUNDARY AND INITIAL CONDITIONS

Figure 3.2: Different power spectral densities
available as initial conditions, equation (3.4).
Normalized such that all of them have equal
integral. The Gaussian profile is plotted for
the case σ/f0 = 1/6 typically used in the sim-
ulations.

E(f) = 1

E(f) = (f/f0)2 exp[−2(f/f0)]

E(f) = (f/f0)4 exp[−2(f/f0)2]

E(f) = exp[−(1/2)(f/fo − 1)2/(σ/f0)2]

(3.4)

where f is the spatial frequency and f0 is the peak spatial frequency. The extent of the turbulence is
limited in the cross-stream direction by an exponential decay over a specified thickness of the order of
the initial shear layer thickness. The solenoidal constraint is imposed on this random turbulent field.
Such quasi-incompressible fluctuations minimize compressibility transients Erlebacher et al. [1990].
The pressure fluctuations are obtained from the Poisson equation for incompressible flow.

3.3 Boundary conditions

3.3.1 Compressible formulation

For non-periodic directions, the treatment of the boundary conditions in the periodic formulation is
done in characteristic form [Thompson, 1987, 1990, Lodato et al., 2008].

3.3.2 Incompressible formulation

To be developed.

3.3.3 Buffer zone

Buffer or sponge zones can be considered at the beginning and at the end of the directions Ox and
Oy. These are simply defined by specifying the number of points over which they extend. We can
consider a filter or a relaxation form.

Regarding the relaxation form, we simply add(
δq

δt

)
b

= −τ−1
q (q− q0) ,

(
δs

δt

)
b

= −τ−1
s (s− s0) (3.5)

19

CHAPTER 3. BOUNDARY AND INITIAL CONDITIONS

to the right-hand sides of the transport equations [Hu, 1996]. The relaxation times τ(x) are defined
in terms of a power function as

τ−1
q = α1(n− n0)α2 , τ−1

s = β1(n− n0)β2 (3.6)

where n is the coordinate normal to the corresponding boundary and n0 the coordinate where the
buffer region begins. The coefficients αi and βi need to be provided, the exponents being preferably
larger or equal than 2 so than the pressure equation has a continuous right-hand side. The reference
fields q0(x) and s0(x) also need to be provided and it can be any general field. Normally, a reference
field is created at some moment in the simulation (generally the initial time) as an average of the
corresponding region in the flow and scalar fields.

20

4 Post-Processing Tools

4.1 Averages

See file dns/tools/statistics/averages/averages.

4.2 Probability Density Functions

See file dns/tools/statistics/pdfs/pdfx.

4.3 Conditioning

See file dns/tools/statistics/averages/averages and dns/tools/statistics/pdfs/pdfx.

4.4 Two-point Statistics

See file dns/tools/statistics/spectra/spectra.

Given two scalar fields {anm : n = 1, . . . , N, m = 1, . . . ,M} and similarly bnm, we calculate the
one-dimensional co-spectra {Ex0 , Ex1 , . . . , ExN/2} and {Ez0 , Ez1 , . . . , EzM/2} normalized such that

〈ab〉 = Ex0 + 2

N/2−1∑
1

Exn + ExN/2 = Ez1 + 2

M/2−1∑
0

Ezm + EzM/2 (4.1)

The mean value is removed, such that the left-hand side is 〈a′b′〉. The Nyquist frequency energy
content ExN/2 and EzM/2 is not written to disk, only the N/2 values {Ex0 , Ex1 , . . . , ExN/2−1} and the

M/2 values {Ez0 , Ez1 , . . . , EzM/2−1}. When a ≡ b, then we obtain the power spectral density.

The sum above can be interpreted as the trapezoidal-rule approximation to the integral
(L/2π)

∫ κc
0 2E(κ)dκ, where κc = π/h is the Nyquist frequency, ∆κ = κc/(N/2) = 2π/L is the

uniform wavenumber spacing, h = L/N is the uniform grid spacing and L is the domain size. Hence,
the physical spectral function at wavenumber κn = n∆κ (equivalently, wavelength L/n) is 2En/∆κ.

Due to the relatively large size of the files, we split the calculations is the auto-spectra and the cross-
spectra. The corresponding files containing the one-dimensional spectra along the direction Ox are
xsp and xCsp, respectively, and similarly along the direction Oz. The two-dimensional co-spectra
Enm can also be written to disk, though the additional memory requirement can be a difficulty.

The one-dimensional cross-correlations {Cx0 , Cx1 , . . . , CxN−1} and {Cz0 , Cz1 , . . . , CzM−1} are nor-
malized by armsbrms, so that Cx0 = Cz0 = 1 when a ≡ b and we calculate the auto-
correlations. The auto-correlations are even functions and therefore only {Cx0 , Cx1 , . . . , CxN/2−1}

21

CHAPTER 4. POST-PROCESSING TOOLS

and {Cz0 , Cz1 , . . . , CzM/2−1} are written to disk (note that we also dropped the last term CxN/2 and

CzM/2.)

The corresponding files containing the one-dimensional cross-correlations along the direction Ox are
xcr and xCcr, and similarly along the direction Oz. The two-dimensional cross-correlation Cnm can
also be written to disk, though the additional memory requirement can be a difficulty.

Both form a Fourier pair according to

Ek =
1

N

N−1∑
0

(armsbrmsCn) exp(−iωkn) , armsbrmsCn =
N−1∑

0

Ek exp(iωkn) ,

where {ωk = (2π/N)k : k = 0, . . . , N −1} is the scaled wavenumber and i =
√
−1 is the imaginary

unit. Therefore,

1

N

N−1∑
0

Cn =
E0

armsbrms
, (4.2)

relation that can be used to relate integral scales ` to the Fourier mode E0, as follows. First, for the
auto-correlation function, we can re-write

1

N/2

N/2−1∑
0

Cn =
E0

a2
rms

+
1− CN/2

N
(4.3)

because

1

N

N−1∑
0

Cn =
1

N

N/2−1∑
0

Cn + CN/2 +
N−1∑
N/2+1

Cn

 =
1

N

2

N/2−1∑
0

Cn + CN/2 − 1

 ,

since, from periodicity, CN = C0 = 1 and, from the symmetry of the auto-correlation sequence,∑N
N/2+1Cn =

∑N/2−1
0 Cn. Therefore, if we use a trapezoidal rule to define the integral length scale

as

` = h

C0 + CN/2−1

2
+

N/2−2∑
1

Cn

 , (4.4)

where h = L/N is the grid spacing and L is the domain size, we obtain

` =
L

2

(
E0

a2
rms

−
2CN/2

N

)
' L

2a2
rms

E0 . (4.5)

This result applies to both directions Ox and Oz, providing relations between `x and Ex, and `z

and Ez. Each case needs to use the corresponding domain size, Lx and Lz.

These relations show that the integral length scales can be obtained directly from the spectral infor-
mation without the need to calculate the correlation functions. However, the statistical convergence
of those integral scales might be too poor and alternative definitions might be more useful. Also,
correlation functions provide information about the degree of de-correlation achieved with a particular
domain size, and about the structural organization of the flow in terms of different properties.

4.5 Summary of Budget Equations for Second-Order Moments

4.5.1 Reynolds Stresses

Reynolds averages are indicated by a line and u
′

= u− ū. Favre averages are used for quantities per

unit mass and are indicated by a tilde, e.g. ũ = ρu/ρ and u
′′

= u − ũ and ũ′′2 = ρu′′2/ρ̄. In case

22

CHAPTER 4. POST-PROCESSING TOOLS

of constant density, Favre and Reynolds averages coincide.

The momentum equation written in non conservative form is

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

= − ∂p

∂xi
+
∂τik
∂xk

+ b gi − εimkcm ρuk (4.6)

where the non-dimensional numbers Re, Fr and Ro are included in the corresponding tensors τ , g
and c for notational convenience.

Multiplying by u
′′
j and averaging

ρu
′′
j

∂(ũi + u
′′
i)

∂t
+ ρu

′′
j (ũk + u

′′
k)
∂(ũi + u

′′
i)

∂xk
= −u′′j

∂p

∂xi
+ u

′′
j

∂τik
∂xk

+ bu
′′
j gi − εimkcmρu

′′
j (ũk + u

′′
k)

(4.7)

noting that ρu
′′
j = 0 we can simplify Eq. (4.7) to

ρu
′′
j

∂u
′′
i

∂t
+ρu

′′
j u
′′
k

∂ũi
∂xk

+ρu
′′
j

∂u
′′
i

∂xk
ũk+ρu

′′
ku
′′
j

∂u
′′
i

∂xk
= −u′′j

∂p

∂xi
+u

′′
j

∂τik
∂xk

+bu
′′
j gi−εimkcmρu

′′
j u
′′
k (4.8)

adding Eq. (4.8) with the indexes exchanged we get

ρ
∂(u

′′
i u
′′
j)

∂t
+ ρ

∂(u
′′
i u
′′
j)

∂xk
ũk =− (ρu

′′
ku
′′
i

∂ũj
∂xk

+ ρu
′′
ku
′′
j

∂ũi
∂xk

)− ρu′′k
∂(u

′′
i u
′′
j)

∂xk

− (u
′′
j

∂p

∂xi
+ u

′′
i

∂p

∂xj
) + (u

′′
j

∂τik
∂xk

+ u
′′
i

∂τjk
∂xk

)

+ (bu
′′
j gi + bu

′′
i gj)

− (εimkcmρu
′′
j u
′′
k + εjmkcmρu

′′
i u
′′
k)

(4.9)

From the continuity equation
∂ρ

∂t
+
∂(ρuk)

∂xk
= 0 (4.10)

and multiplying by u
′′
i u
′′
j and averaging

u
′′
i u
′′
j

∂ρ

∂t
+ u

′′
i u
′′
j

∂(ρu
′′
k)

∂xk
+ u

′′
i u
′′
j

∂(ρũk)

∂xk
= 0 (4.11)

defining

Rij =
ρu
′′
i u
′′
j

ρ̄
(4.12)

and adding Eqs. (4.9) and (4.11) we get

∂(ρ̄Rij)

∂t
+
∂(ρ̄ũkRij)

∂xk
=− ρ̄

(
Rik

∂ũj
∂xk

+Rjk
∂ũi
∂xk

)
−
(
∂(ρu

′′
i u
′′
j u
′′
k)

∂xk

)
−
(
u
′′
i

∂p′

∂xj
+ u

′′
j

∂p′

∂xi

)
+

(
u
′′
i

∂τ
′
jk

∂xk
+ u

′′
j

∂τ
′
ik

∂xk

)
−
(
ū
′′
i

∂p̄

∂xj
+ ū

′′
j

∂p̄

∂xi

)
+

(
ū
′′
i

∂τ̄jk
∂xk

+ ū
′′
j

∂τ̄ik
∂xk

)
+ (bu

′′
j gi + bu

′′
i gj)− ρ̄cm(εimkRjk + εjmkRik)

(4.13)

23

CHAPTER 4. POST-PROCESSING TOOLS

The pressure and viscous terms can be decomposed as:

(
u
′′
i

∂p′

∂xj
+ u

′′
j

∂p′

∂xi

)
=

(
∂(u

′′
i p
′)

∂xj
+
∂(u

′′
i p
′)

∂xi

)
− p′(

∂u
′′
i

∂xj
+
∂u
′′
j

∂xi
)

=
∂

∂xk

(
u
′′
i p
′δjk + u

′′
j p
′δik

)
− p′(

∂u
′′
i

∂xj
+
∂u
′′
j

∂xi
)(

u
′′
i

∂τ
′
jk

∂xk
+ u

′′
j

∂τ
′
ik

∂xk

)
=

∂

∂xk

(
u
′′
i τ
′
jk + u

′′
j τ
′
ik

)
−
(
∂u
′′
i

∂xk
τ
′
jk +

∂u
′′
j

∂xk
τ
′
ik

)
(4.14)

Finally, the Reynolds stress equation reads:

∂Rij
∂t

= Cij − Fij + Pij +Bij − εij +
1

ρ̄

(
Πij −

∂Tijk
∂xk

+ Σij

)
(4.15)

where

Cij = −ũk
∂Rij
∂xk

, advection

Fij = εimkcmRjk + εjmkcmRik ,Coriolis redistribution

Pij = −
(
Rik

∂ũj
∂xk

+Rjk
∂ũi
∂xk

)
, turbulent shear production

Bij = 1
ρ̄

(
bu
′′
j gi + bu

′′
i gj

)
, turbulent buoyancy production

εij = 1
ρ̄

(
τ
′
jk
∂u
′′
i

∂xk
+ τ

′
ik

∂u
′′
j

∂xk

)
, turbulent dissipation

Tijk = ρu
′′
i u
′′
j u
′′
k + p′u

′
iδjk + p′u

′
jδik − (τ

′
jku

′′
i + τ

′
iku
′′
j) , turbulent transport

Πij = p′
(
∂u
′′
i

∂xj
+

∂u
′′
j

∂xi

)
, pressure strain

Σij = u
′′
i

(
∂τ̄jk
∂xk
− ∂p̄

∂xj

)
+ u

′′
j

(
∂τ̄ik
∂xk
− ∂p̄

∂xi

)
,mean flux

Depending on symmetries, many of these terms are zero (within statistical convergence) and substi-
tutes for ensemble average can be used, like plane averages of time averages. Note that if b ≡ ρ,
then Bij = 0. The mean flux term is sometimes written as Σij = Dij −Gij , the first term grouping
the mean viscous stress contributions and the last term the mean pressure contributions. In cases of

constant density, then u
′′
j = 0 and Σij = Dij = Gij = 0.

Contracting indices, the budget equation for the turbulent kinetic energy K = Rii/2 reads

∂K

∂t
= C + P +B − ε+

1

ρ̄

(
Π− ∂Tk

∂xk
+ Σ

)
(4.16)

Note that Fii = 0, always. If the flow is solenoidal, then Π = 0.

4.5.2 Energy Equation

To be developed (before in terms of the pressure)

24

CHAPTER 4. POST-PROCESSING TOOLS

4.5.3 Scalar Variance

Similarly, the equation for the scalar r.m.s. is obtained from the scalar conservation equations,

∂

∂t
(ρζ) +

∂

∂xk
(ρζuk) = − ∂jk

∂xk
+ w

multiplying by ζ
′′

and averaging

ρζ ′′
∂ζ ′′

∂t
+ρζ ′′u

′′
k

∂ζ̃

∂xk
+ρζ ′′

∂ζ ′′

∂xk
ũk +ρζ ′′u

′′
k

∂ζ ′′

∂xk
= − ζ ′′ ∂j̄k

∂xk
− ∂

∂xk

(
j′kζ

′′
)

+ j′k
∂ζ ′′

∂xk
+wζ ′′ (4.17)

Adding the mass conservation equation multiplied by 1
2ζ
′′2 and averaging

∂

∂t
(ρζ ′′2) +

∂

∂xk
(ũkρζ

′′2) =

− 2ρζ ′′u
′′
k

∂ζ̃

∂xk
− ∂

∂xk

(
ρζ ′′2u

′′
k + 2j′kζ

′′
)

+ 2j′k
∂ζ ′′

∂xk
− 2ζ ′′

∂j̄k
∂xk

+ 2wζ ′′ (4.18)

Defining

Rζζ =
ρζ ′′2

ρ̄
(4.19)

Rkζ =
ρζ ′′u

′′
k

ρ̄
(4.20)

the previous transport equation can be further simplified to

∂Rζζ
∂t

+ ũk
∂Rζζ
∂xk

= Pζζ − χ+
1

ρ̄

(
−
∂Tζζk
∂xk

+Dζζ +Qζζ

)
(4.21)

where

Pζζ = −2Rkζ
∂ζ̃
∂xk

, turbulent production

χ = −2
ρ̄j
′
k
∂ζ′′

∂xk
, turbulent dissipation

Tζζk = ρζ ′′2u
′′
k + 2j′kζ

′′ , turbulent transport

Dζζ = −2ζ ′′ ∂j̄k∂xk
,mean flux

Qζζ = 2wζ ′′ , source

25

CHAPTER 4. POST-PROCESSING TOOLS

26

5 Parallelization

5.1 Domain decomposition

The domain decomposition is performed along the first and last indexes, typically i and k, respectively,
that is, along directions Ox and Oz. Initially, the code only supported 1D decomposition along Oz,
the outer-most index. The reason to chose that direction was to simplify I/O and to maintain
homogeneity in the serial part of the algorithm (the largest part) for the cases with periodicity along
that direction (boundary conditions where only needed in the other two directions, for instance, in
a spatially evolving flow like a jet). When the domain decomposition was extended to a second
direction, we chose Ox, the reason being again to keep the algorithm equal in every task in the
cases where homogeneity and periodicity apply along those two directions. Figure 5.1 sketches this
2D decomposition and summarizes part of the main code variables. We will use the term MPI task
or simply task (instead of processor, node, core, ...) – that is, we decompose the problem into
ims npro i×ims npro k tasks. The mapping is established at read/write time and details follow
below. For each task, each array can be interpreted as jmax×kmax lines of size imax, as illustrated
in figure 5.1.

Figure 5.1: Domain decomposition of the global array of size imax total×jmax total×kmax total into the the
local arrays of size imax×jmax×kmax using ims npro i MPI tasks along the first (inner-most) index and ims npro k

along the last (outer-most) index. The structure in memory is shown in a two-dimensional array where the inner-most
index runs up to imax and the outer-most index runs up to jmax×kmax; it can also be interpreted as kmax pages of
size imax×jmax.

Two main transpositions are needed to perform the derivatives or any other implicit operation in
which we only need a set of complete lines along the desired direction contiguously in memory. This
is represented in figure 5.2. For instance, if we need a derivative along Ox of the field in array a,

27

CHAPTER 5. PARALLELIZATION

we can interpret the algorithm as follows. Consider that array as jmax×kmax lines of size imax,
as illustrated before in figure 5.1. Divide jmax×kmax, the outer index, by ims npro i, so as to
have precisely ims npro i blocks (or colors) of size imax times whatever number you got before.
Each of those blocks is send to the corresponding processor. This operation is masked by creating
an appropriate MPI type, which is done during the initialization of the MPI part of the code. The
constraint we impose is that the ratio jmax×kmax/ims npro i needs to be an integer – take this
into account when defining the grid. (This constraint could be avoided using padding, but we do
not do it in these main transposition operations.)

Let us consider now an implicit operation along Oz. For this case, each of the pages imax×jmax
needs to be divided by the number of tasks ims npro k, and this ratio is what needs to be an integer.
It is also seen in figure 5.2 that now we need a stride in the MPI type. The rest of the transposition
algorithm is similar to the previous case. The code variables containing the corresponding MPI types
for the transposition operations described in the previous and this paragraphs are DNS MPI I PARTIAL

and DNS MPI K PARTIAL, respectively.

Figure 5.2: Memory management in transposition operations, from sketch in figure 5.1. Each color indicates the block
of memory that goes into a common task. Based on these graphs, the offsets, strides and sizes in the MPI derived
types are defined. The ratios at the bottom need to be an integer. You have as many colors as tasks involved in the
corresponding transposition.

The I/O is done using MPI IO library. We read

ims npro = ims npro i× ims npro k

contiguous blocks of contiguous data, each block into one task. The corresponding state is precisely
equal to that obtained after the PARTIAL I transposition, and so the only additional thing we need to
do is an inverse transposition of that type, and we already have the structure described in figure 5.1.
By this procedure we also defined the mapping, which is sketched in figure 5.3. From that mapping
we see that a task ims pro contains the block given by

ims pro i = MOD(ims pro, ims npro i)

ims pro k = INT(ims pro, ims npro i)

28

CHAPTER 5. PARALLELIZATION

Figure 5.3: Mapping.

When needed, the information defining the boundary conditions is read from disk using a similar
procedure. we just need to define new MPI types for the transposition along Ox according to the
specific size of the corresponding arrays. This is done inside the I/O routines, as appropriate.

For the transpositions required in the Poisson equation, the procedure is similar to the main algorithms
defined above and shown in figures 5.1 and 5.2, although two additional planes in Oy containing the
boundary conditions, one at the bottom and one at the top, and one in Ox for the pseudo-Nyquist
frequency are added (pseudo meaning that only one should be added, but space is reserved in each
processor along that direction to keep the algorithm homogeneous; this could be redefined). For
these cases, padding is used inside each pages (defined above) so that the only constraints in the
grid are those imposed before in the two major kinds of transposition. Hence, for a transposition
along Oz, the same structure as shown in figure 5.2 is used but with a page of size isize txc dimz

instead of imax×jmax, such that isize txc dimz is a multiple of 2×ims npro k, (the factor of
2 for real and imaginary parts of the same complex number to remain in the same processor) and
larger than (imax+2)×(jmax+2).

The same description applies to the transposition along Ox. The only difference here is that a second
type is added for the transformation without the Nyquist frequency. This is used for instance for the
first forward transposition of data. More here?

29

CHAPTER 5. PARALLELIZATION

30

6 Code

The root directory contains the sources for the common libraries, and the directory tools con-
tains the sources for the specific binaries: the main code in tools/dns, and the preprocessing and
postprocessing tools.

Files README and TODO contain additional information. To compile, read INSTALL.

Directory examples contains a few examples to get acquainted with using the code.

6.1 Executables

Simulation
dns.x main program used to run a simulation. It will read its input from the file dns.ini that the user must

supply. An example file is located in examples. All standard output is written to dns.log and dns.out.
Errors are reported to dns.err and warnings to dns.war. In order to run the simulation you must
provide with an initial flow and scalar fields. and a grid file.
Sources in tools/dns.

Preprocessing
inigrid.x generates the grid by reading the parameters of the dns.ini file, section [IniGridOx], [IniGridOy] and

[IniGridOz].
Sources in tools/initialize/grid.

inirand.x generates the scal.rand or flow.rand file that contains a pseudo-random, isotropic field that will be
used by the following program to generate flow or scalar initial fields. The parameters are described
in dns.ini, section [Broadband].
Sources in tools/initialize/rand

iniscal.x generates the scal.ics file by reading the parameters of the dns.ini file, section [IniFields].
Sources in tools/initialize/scal.

iniflow.x generates the flow.ics file by reading the parameters of the dns.ini file, section [IniFields].
Sources in tools/initialize/flow.

Postprocessing
averages.x calculates main average profiles and conditional averages (outer intermittency).

Sources in tools/statistics/averages.
spectra.x calculates 1D, 2D and 3D spectra and co-spectra of main variables. Correlations should be included

here.
Sources in tools/statistics/spectra.

pdfs.x calculates PDFs, joints PDFs and conditional PDFs.
Sources in tools/statistics/pdfs.

visuals.x calculates different fields and exports data for visualization (default is ensight format).
Sources in tools/plot/visuals.

31

CHAPTER 6. CODE

6.2 Input file dns.ini

The following tables describe the different blocks appearing in the input file dns.ini. The first
column contains the tag. The second column contains the possible values, the first one being the
default one and the word value indicating that a numerical value needs to be provided. The third
column describes the field. This data is read in the file * READ GLOBAL and in the files * READ LOCAL

of each of the tools; the variable corresponding to each field should be also read there.

Data is case insensitive.

[Version]
Major value Major version number. An error is generated if different from the

value set in DNS READ GLOBAL.
Minor value Minor version number. A warning is generated if different from

the value set in DNS READ GLOBAL.

[Main]
Type temporal, spatial Temporally evolving or spatially evolving simulation.
Flow shear, jet, isotropic Geometry of the flow, mainly related to initial and boundary con-

ditions.
CalculateFlow yes, no Execute code segments affecting the flow variables.
CalculateScalaryes, no Execute code segments affecting the scalar variables.
Equations internal, total,

incompressible

Define system of equations to be solved.

Mixture None, AirVapor, AirWater,

AirWaterSupersaturation

Defines the mixture to be used for the thermodynamics.

TermAdvection divergence, convective,

skewsymmetric

Formulation of the advection terms.

TermViscous divergence, explicit Formulation of the viscous terms.
TermDiffusion divergence, explicit Formulation of the diffusion terms.
TermBodyForce None, Explicit, Homogeneous,

Linear, Bilinear,

Quadratic, PiecewiseLinear,

PiecewiseBilinear

Formulation of the body force terms (see routine
flow/flow buoyancy).

TermCoriolis none, explicit, normalized Formulation of the Coriolis terms.
TermRadiation None, Bulk1dGlobal,

Bulk1dLocal, Bulk1dMixed,

Bulk1dLocalMap,

Bulk1dMixedMap

Formulation of the radiation termr (see routine
flow/flow radiation).

SpaceOrder CompactJacobian4,

CompactJacobian6,

CompactDirect6

Finite difference method used for the spatial derivatives.

TimeOrder RungeKuttaExplicit3,

RungeKuttaExplicit4,

RungeKuttaDiffusion3

Runge-Kutta method used for the time advancement.

TimeStep value If positive, constant time step to be used in the time marching
scheme.

TimeCFL value Courant number for the advection part.

[Iteration]
Start value Initial iteration. The corresponding files flow.* and scal.* will

be read from disk.
End value Final iteration at which the algortihm will be stopped.
Restart value Iteration step specifying the frequency with which to write the

restart files to disk.
Statistics value Iteration step specifying the frequency with which to calculate

statistics.
IteraLog value Iteration step specifying the frequency with which to write the

log-file dns.out.

32

CHAPTER 6. CODE

RunAvera no, yes Save running averages to disk (spatially evolving simulations).
RunLines no, yes Save line information to disk (spatially evolving simulations).
RunPlane no, yes Save plane information to disk (spatially evolving simulations).
StatSave value Iteration step specifying the frequency with which to accumulate

statistics (spatially evolving simulations).
StatStep value Iteration step specifying the frequency with which to save data to

disk (spatially evolving simulations).

[Parameters]
Reynolds value Reynolds number Re in section 1.
Prandtl value Prandtl number Pr in section 1.
Froude value Froude number Fr in section 1.
Rossby value Rossby number Ro in section 1.
Mach value Mach number Ma in section 1.
Gama value Ratio of specific heats γ in section 1.
Schmidt value1, value2, ... List of Schmidt numbers Sci in section 1. The number of values

defines the number of scalars in the problem. If a mixture is
defined in the block [Main], then consistency is checked.

Damkohler value1, value2, ... List of Damkohler numbers Dai in section 1.

[Control]
FlowLimit yes, no Monitor and eventually force the thermodynamic fields to be

within a prescribed interval.
MinPressure value Lower bound for the pressure interval.
MaxPressure value Upper bound for the pressure interval.
MinDensity value Lower bound for the density interval.
MaxDensity value Upper bound for the density interval.
ScalLimit yes, no Monitor and eventually force the scalar fields to be within a pre-

scribed interval.
MinScalar value Lower bound for the scalar interval.
MaxScalar value Upper bound for the scalar interval.

[Grid]
Imax value Number of points along the Ox direction (first array index).
Jmax value Number of points along the Oy direction (second array index).
Kmax value Number of points along the Oz direction (third array index). If

set equal to 1, then 2D simulation.
Imax(*) value Number of points per processor (MPI task) along the Ox direction

(MPI parallel mode).
Jmax(*) value Number of points per processor (MPI task) along the Oy direction

(MPI parallel mode). So far, this value is set equal to the total
size because only a 2D decomposition has been implemented.

Kmax(*) value Number of points per processor (MPI task) along the Oz direction
(MPI parallel mode).

XUniform yes, no Uniform grid is used in the Ox direction; no Jacobian information
is needed.

YUniform yes, no Uniform grid is used in the Oy direction; no Jacobian information
is needed.

ZUniform yes, no Uniform grid is used in the Oz direction; no Jacobian information
is needed.

XPeriodic no, yes Periodicity along Ox direction.
YPeriodic no, yes Periodicity along Oy direction.
ZPeriodic no, yes Periodicity along Oz direction.

[BoundaryConditions]
ToBeFilled
VelocityImin none, noslip, freeslip Velocity boundary condition at xmin (incompressible mode).
VelocityImax none, noslip, freeslip Velocity boundary condition at xmax (incompressible mode).

33

CHAPTER 6. CODE

Scalar#Imin none, dirichlet, neumman Scalar boundary condition at xmin (incompressible mode). The
symbol # is the number of the scalar.

Scalar#Imax none, dirichlet, neumman Scalar boundary condition at xmax (incompressible mode). The
symbol # is the number of the scalar.

Similarly in the other two directions.

[BufferZone]
Type none, relaxation, filter,

both

Type of buffer or sponge layer to use.

LoadBuffer no, yes If no, then create reference buffer fields from the current fields
and save them to disk.
If yes, then read the necessary buffer fields from disk. E.g., for
the upper boundary, the file name to be searched for would be
flow.bcs.jmax and scal.bcs.jmax.

PointsImin value Number of points in the Ox direction at xmin.
PointsImax value Number of points in the Ox direction at xmax.
PointsUJmin value Number of points in the Oy direction at ymin for the velocity fields.
PointsUJmax value Number of points in the Oy direction at ymax for the velocity

fields.
PointsEJmin value Number of points in the Oy direction at ymin for the thermody-

namic fields.
PointsEJmax value Number of points in the Oy direction at ymax for the thermody-

namic fields.
PointsSJmin value Number of points in the Oy direction at ymin for the scalar fields.
PointsSJmax value Number of points in the Oy direction at ymax for the scalar fields.
ParametersU value1, value2, ... Set of parameters defining the the strength and the exponent of

the relaxation term in the flow and thermodynamic fields, sec-
tion 3.3.3.

ParametersS value1, value2, ... Set of parameters defining the the strength and the exponent of
the relaxation term in the scalar fields, section 3.3.3.

[Flow]
Pressure value Reference mean pressure.
Density value Reference mean density.
VelocityX value Reference mean velocity along Ox.
VelocityY value Reference mean velocity along Oy.
VelocityZ value Reference mean velocity along Oz.
ProfileVelocityNone, Linear, Tanh, Erf,

Ekman, EkmanP

Function form of the mean velocity profile, typically along the
direction Ox.

YCoorVelocity value Coordinate along Oy of the reference point of the profile, relative
to the total scale, equation (3.1).

ThickVelocity value Reference profile thickness, equation (3.1).
DeltaVelocity value Reference profile difference, equation (3.1).
DiamVelocity value Reference profile diameter (jet mode).
Similarly for density or temperature

[Scalar]
ProfileScalar# None, Linear, Tanh, Erf,

LinearErf

Function form of the mean profile.

MeanScalar# value Reference mean scalar.
YCoorScalar# value Coordinate along Oy of the reference point of the profile, relative

to the total scale.
ThickScalar# value Reference profile thickness.
DeltaScalar# value Reference profile difference.
DiamScalar# value Reference profile diameter (jet mode).

[BodyForce]

34

CHAPTER 6. CODE

Vector value1, value2, value3 Components of the buoyancy unitary vector (g1, g2, g3) in sec-
tion 1.

Parameters value1, value2, ... Set of parameters defining the buoyancy function be(si).

[Rotation]
Vector value1, value2, value3 Components of the angular velocity vector (f1, f2, f3) in sec-

tion 1.
Parameters value1, value2, ... Set of parameters the Coriolis force term.

[Radiation]
Scalar value Index of scalar field on which the effect of radiation heating or

cooling is acting.
Parameters value1, value2, ... Set of parameters defining the radiation function re(si).

[IniFields]
Velocity None, VelocityDiscrete,

VelocityBroadband,

VorticityBroadband,

PotentialBroadband

Type of initial velocity field.

Temperature None, PlaneBroadband,

PlaneDiscrete

Type of initial temperature field.

Scalar None, LayerDiscrete,

LayerBroadband,

PlaneDiscrete,

PlaneBroadband,

DeltaDiscrete,

DeltaBroadband,

FluxDiscrete, FluxBroadband

Type of initial scalar field.

ForceDilatationyes, no Force the velocity field to satisfy the solenoidal constraint.
ThickIni value[1 , value2, ...] Thickness of fluctuation shape profile. The mean profile is set by

the corresponding by values in [Flow] and [Scalar]. In case of
the scalar, as many values as scalars should be provided.

YCoorIni value[1 , value2, ...] Coordinate along Oy of the reference point of the fluctuation
shape profile, relative to the total scale. The mean profile is set
by the corresponding by values in [Flow] and [Scalar]. In case
of the scalar, as many values as scalars should be provided. The
default values are those specified in [Flow] and [Scalar].

NormalizeK value Maximum value of the profile of the turbulent kinetic energy.
NormalizeP value Maximum value of the profile of the pressure root-mean-square.
NormalizeS value1, value2, ... Maximum value of the profile of the scalar root-mean-square.
Mixture None, Equilibrium,

LoadFields

Type of mixture with which to initialize the thermodynamic fields.

[Broadband]
Type None, Physical, Phase The random magnitude is set in physical space or phase in fre-

quency space.
Distribution uniform, gaussian Type of the PDF.
Seed value Seed for the random generator.
Covariance value1, value2, ... Flow covariance matrix.
Spectrum uniform, quadratic, quartic,

gaussian

Form of the power spectral density, equation (3.4).

f0 value Parameters defining the functional form of the power spectral
density.

[Discrete]
Type Varicose, Sinuous, Gaussian Form of the perturbation.

35

CHAPTER 6. CODE

2DAmpl value1, value2, ... Amplitude of 2D modes. The number of values sets the number
of modes, beginning from the first.

2DPhi value1, value2, ... Corresponding phases.
Broadening value Lateral extension of the perturbation.
XLength value In spatial simulations, longitudinal extension of the inflow pertur-

bation.

[PostProcessing]
Files value1, value2, ... Iterations to be postprocessed.
Subdomain i1, i2, j1, j2, k1, k2 Grid block to be postprocessed.
Partition α1[, α2], β1, ..., βn−1 Type of partition defined by values {α1[, α2]}. The first param-

eter defines the conditioning field: 1. external field, 2. scalar
field, 3. enstrophy, 4. magnitude of scalar gradient. The second
parameter chooses between a relative or an absolute threshold
values. Set of thresholds {β1, ...,βn−1} to define the partition of
the conditioning field into n zones.

ParamAverages α1[, α2, α3, α4] Main option α1 (see tools/statistics/averages/averages.f90);
block size α2; gate level α3; maximum order of the moments α4.

ParamPdfs α1[, α2, α3, α4] Main option α1 (see tools/statistics/pdfs/pdfs.f90); block
size α2; gate level α3; number of bins α4.

ParamSpectra α1[, α2, α3, α4] Main option α1 (see tools/statistics/spectra/spectra.f90);
block size α2; save full spectra α3; average over iteration α4.

[Inflow]
Type None, Discrete,

BroadbandPeriodic,

BroadbandSequential

Type of inflow forcing to use in a spatially evolving simulation.

Adapt value Interval in global time units for starting the inflow forcing.

36

7 Grid

The equations are solved using Cartesian co-ordinates and the grid is structured. The grid is con-
structed by building up the three directions separately (in a 2D case, Oz has simply one node). Each
direction is broken into segments, and each of those segments are built with specified algorithms.
(One segment is often enough for usual configurations.) The first point in each direction is set at
zero.

The executable is inigrid.x and reads data from dns.ini, as any of the other tools. The data blocks
are [IniGridOx], [IniGridOy] and [IniGridOz]. Once created, basic information about the grid is saved
into the file grid.sts. Grid transformations can be done with transgrid.x ; the corresponding sources
are in the /tools/transform/grid sub-directory. They allow to print out an ASCII file with the grid
positions, add an offset, drop or introduce planes and make a scaling. (As in the case of the utilities
of the main code, a browse through them is recommended, though they are really simple.)

The main options for each particular direction are:

• segments: Number of segments in that direction.

• periodic: If yes, a uniform mesh is done with a number of points equal to the sum of the points
of all segments, and over a length equal to the sum of the length of all segments, regardless
the input options for each segment. The last plane in that direction is dropped, so that the
last point does not match the scale (the latter is a bit larger).

• mirrored: If yes, this direction is created with the corresponding options and then it is mirrored
with respect to the origin. The final scale is the double of that set in the input file dns.ini and
the first node is moved to zero. In the case of mirroring the number of points is always even.

7.1 Segments

Information about segment number n is specified with the suffix n in the options below:

• scales: physical end of the segment.

• points: number of points in the segment. This number includes the first and the last points
of the present segment, which are common with the adjacent ones. (E.g., if one direction has
three segments with 11, 16 and 6 points each, the total number of points in that direction will
be 31, 30 steps.)

• opts: list of options for the generation algorithm.

– opts = 0 : Uniform grid.

– opts = 1− 3 : See old version of this document.

– opts = 4 : Geometric progression. Not used in a loooong time.

37

CHAPTER 7. GRID

– opts = 5 : Explicit mapping: hyperbolic tangent of the space step.

– opts = 6 : Explicit mapping: hyperbolic tangent of the stretching factor.

• vals: list of constants for the different generation algorithms.

7.2 Explicit mappings (opts 5 and 6)

A basic grid is considered first with uniform spacing, that is {sj = h0(j − 1) : j = 1, . . . , n}.

In case of a hyperbolic tangent (i.e. opts=5), the mapping is

dx

ds
= 1 +

h1/h0 − 1

2

[
1 + tanh

(
s− s1

2δ1

)]
(7.1)

that is, the grid step ∆x = dx/dj varies between the uniform values h0 and h1, the transition
occurring at s = s1 and over a length δ1. The space step h0 corresponds to that of the initial
uniform grid. The parameters s1, h1/h0 and δ1 are provided in the corresponding vals record of the
dns.ini file.

Two transitions are possible if the opts record is set to 5, 2. The mapping is then

dx

ds
= 1 +

h1/h0 − 1

2

[
1 + tanh

(
s− s1

2δ1

)]
+
h2/h0 − 1

2

[
1 + tanh

(
s− s2

2δ2

)]
(7.2)

In case of opts=6 a hyperbolic tangent variation of the stretching factor f = d/dx(∆x) (so defined,
f + 1 an approximation to the ratio (∆x)j+1/(∆x)j) is imposed by solving the linear equation

d2x

ds2
− (f/h1)

dx

ds
= 0 , (7.3)

where f is given by

f =
∆f1

2

[
1 + tanh

(
s− s1

2δ1

)]
(7.4)

and the parameters s1, ∆f1 and δ1 are provided in the list vals. The non-dimensional parameter f
then varies from 0 to ∆f1; values smaller that 0.1 are recommended (less that 10% stretching). A
first integral of this problem leads to

dx

ds
=

[
1 + exp

(
s− s1

δ1

)]δ1(∆f1/h1)

. (7.5)

This equation for x(s) needs to be solved numerically, but already shows that this mapping leads to
an exponential growth of the space step ∆x and the grid x(s). Note that δ1 admits negative values.

As before, two transitions are possible if the opts record is set to 6, 2,

f =
∆f1

2

[
1 + tanh

(
s− s1

2δ1

)]
+

∆f2

2

[
1 + tanh

(
s− s2

2δ2

)]
(7.6)

7.3 Geometric progression algorithm (opts 4)

For each segment i the geometric ratio ri is given (input variable val1). The rest of the constrains
are the number of points in each segment, ni and the total length in that direction, L. The first step

38

CHAPTER 7. GRID

of the first segment is initialized to 1 (this number does not matter because of the final scaling),
and then the first segment is generated. The last step size is taken as the first one for the second
segment, and the sequence continue until the last segment. A final rescaling adjusts the physical
length of the grid in that direction.

The length of each segment in the grid is saved into grid.sts. For calculating them, if we denote the
length of each segment by li, we have

li = h1
i (1 + ri + r2

i + . . .+ rni−2
i) = h1

i

1− rni−1
i

1− ri
= h1

iCi (7.7)

The first step h1
i of each segment is related to the previous one by

h1
i+1 = h1

i r
ni−1
i (7.8)

and the equation to close the problem is

L =
∑
seg

li = h1
1

(
C1 + rn1−1

1 C2 + rn1−1
1 rn2−1

2 C3 + . . .
)

(7.9)

39

CHAPTER 7. GRID

40

8 Scaling

For spatial discretization implicit schemes are used. Hence, the calculation of a derivative always
involves communication amongst all processors in a line along which a derivative is computed. From
ad-hoc considerations it is not clear which is the optimum two-dimensional domain-decomposition.
While for small numbers of cores one would expect the network latency of an MPI call to dominate,
for larger numbers it is the number of processors involved in the call that makes MPI calls expensive.
Therefore, below a certain threshold, a 1D decomposition is expected to be beneficial. Where this
turnover takes place is subject to many factors such as the CPU clock speed, network latency, MPI
implementation, number of grid points, etc.

We briefly introduce now definitions and notation used in the rest of this section. We define Q :=
qx × qy × qz, the number of grid points, as a measure of the size of the simulations and choose in
the following to label simulations by Q. To label the simulations, we use the common abbreviations

k = 210; M = 220; G = 230 (8.1)

for readability. The memory necessary to save one 3D array in double precision data format is
8×Q Byte. The scaling of the code is discussed in terms of speedup S and efficiency η defined as

S :=
T

Tref
η =

T

NTref
× 100%, (8.2)

where T is the real time to run a particular case, N the number of processors and the subscript ’ref’
indicates a reference value.

The code has been instrumented to measure the real time that is necessary to perform one stage of
the multi-stage Runge-Kutta time-stepping scheme. This corresponds essentially to the evaluation of
the right-hand-side term of the governing equations solved. The pre-processor flag -DUSE_PROFILE

activates it and data is written into the log file dns.log. The aim is to remove the overhead time
associated with I/O and initialization.

8.1 Scaling on the cluster jugene@fz-juelich.de

Performance of the DNS code has been measured for various geometries varying the total number of
grid points by two orders of magnitude. Many-core scaling properties of the DNS code, version 5.6.6
on the machine jugene@fz-juelich.de (site Jülich Supercomputing Center) were investigated. All
simulations have been run in SMP mode using 4 OpenMP threads, reaching up to up to 8k MPI tasks
distributed over 8k nodes (1 rack contains 1k nodes), using 4 cores per node (i.e. 32k cores in total).
Linear scaling is observed for up to 4096 MPI tasks using about 6-8 M grid points per processor
(domains of 24-32 G grid points). The maximum efficiency is usually reached when simulations are
carried out within one mid-plane. In this case, a slightly super-linear scaling (with respect to the
reference at 32 nodes) is observed for the standard domain sizes of up to 4 G grid points.

The code has been run for 2 iterations, i.e. 10 Runge-Kutta stages using the fourth-order, five-
stages algorithm, and the variance of measured times was found to be of the order of 1%. The cases
considered here are listed in Table 8.1.

41

CHAPTER 8. SCALING

Name qx qy qz Q

1024x0384 1024 1024 384 384
M

2048x0192 2048 2048 192 768
M

2048x1024 2048 2048 1024 4 G
3072x1536 3072 3072 1536 12 G
4096x1536 4096 4096 1536 24 G
4096x2048 4096 4096 2048 32 G

Table 8.1: Geometry and labels of the 3D cases.

8.1.1 Strong Scaling

The total number of MPI tasks (nodes) available to a simulation are distributed as N =ims npro

= ims npro k × ims npro i in the directions of k (z) and i (x). A series of measurements has
been carried out to determine the optimum configuration for the six cases listed in table 8.1. Scaling
matrices are shown in Figures 8.1 and 8.2 for the different cases. In these matrices the number of
processors is constant along diagonals from the lower left to the upper right. In every matrix, the
diagonal for N = 1k MPI tasks is outlined by solid borders. In each of these diagonals, the best and
worst configurations are marked by green, respectively red, color. In these matrices, the speed-up
and efficiency is for strong scaling, and always calculated with respect to the time Tref for the lowest
number of cores with the lowest ims npro i. Efficiency η and speed-up S are calculated as above.
The shapes used in the simulations, that is, the relative connection among mid-planes, is 1× 1× 1,
2× 1× 1, 2× 2× 1, 2× 2× 2, 4× 2× 2, ordered from 1 mid-plane (512 nodes) to 16 mid-planes
(8192 nodes).

8.1.2 Scaling from 32 to 8192 nodes

A strong scaling analysis over the entire range of nodes from 32 to 8192 is not possible. Hence, we
restrict ourselves to a scaling analysis where we consider the number of grid points that is handled
per processor and time unit. A straightforward definition for a metric of performance P is

P :=
Q

NT
, (8.3)

the number of grid points processed per node and per time. T is the time needed by each of the
cases to advance exactly the same amount of instructions in the main algorithm, e.g. one stage of
the Runge-Kutta scheme. P is a metric that makes performance comparable over almost arbitrary
problem sizes and numbers of cores.

Note, that the caveat here is the operation count for the Fourier transforms which goes as qi log qi
and qi ≈ Q1/3 if domains are expanded by the same factor in each direction. Hence, for the overall
operation count of the Fourier transforms ΣFFT we get

ΣFFT

q2
i

∝ 3qi log qi = Q1/3 logQ⇒ ΣFFT ∝ Q logQ. (8.4)

For the range of Q considered here, this effect is, however, small since the super-linear contribution
of ΣFFT is only log 32G

log 384M ≈ 1.2 and the FFT accounts for a negligible part of the computational time

42

CHAPTER 8. SCALING

!"
#$
%&
'&
'(
#)
*+
,-
.

/(
0
12

-3
4(
56
72
*8
9:
(-
;(
<=
>#

?@
##
=

A2
87
,)
B(
>-

9;
7.
2

3
2*
9C
72
8(
;-

(DC
.2
-2

(E
F&
$E
G&
FH
&H
EF
F

!"
#$
%"
&'
$%
!"
#$
()&

'$
*
+,(
!-

.(
/0
1/
23
4

#"
$'
%"
!5
#%
#"
$'
()6

7'
*
+,(
!-

.(
/0
1/
23
4

#"
$'
%!
"#
$%
#"
$'
()$

8+
,(!
-.

(/0
1/
23
4

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

-0
92
:;

3
'

!7
&#

7$
!#
'

#<
7

<!
#

!"
#$

-0
92
:;

3
&#

7$
!#
'

#<
7

<!
#

!"
#$

#"
$'

-0
92
:;

3
&#

7$
!#
'

#<
7

<!
#

!"
#$

#"
$'

!
$&
#<

H'
FG

K%
L

/G
L

H%
%

F'
G

!
$&
$"

H'
FE

K%
/

/L
G

M%
E

FK
'

!
$

AN
HG
HE

F'
/E

FE
FK

#
%M
'E

H%
F%

FF
K%

%%
E

HL
F

FG
K
AN

#
%M
H%

H%
EE

FF
'G

%'
/

MM
G

HF
%
AN

#
AN

MF
LE

FG
GE

FE
H%

AN

$
/%
LH

HG
ME

FH
LE

'E
E

HL
%

F'
%

KG
AN

$
HG
H%

FH
'H

'E
%

MH
/

FL
E

F%
'
AN

$
AN

/H
'E

FL
FE

KL
H

%H
%
AN

'
HH
'E

FM
/E

'F
%

HK
E

FG
F

KM
'F
:'

AN
'

FM
FM

'F
/

M/
%

FG
L

FE
%

FF
K
AN

'
AN

M%
ME

H/
EE

FE
HF

/K
M

M'
F
$

!7
$

'/
E

HL
M

!<
7

5"
%E
:K

/K
$

!7
'/
E

ME
K

FG
H

KM
:%

GL
$

$
!7

ML
HE

FK
ME

FF
L%

/K
E

M/
F
$

$

&#
$

$
F'
F

KH
$'
,'

M/
$

$
&#

MH
F

FG
L

KH
:%

%K
$

$
&#

HE
KE

FE
GE

%F
K

HL
G
$

$
$

7$
$

=
$

&$
$

$
$

7$
KM

'F
:%

$
$

$
7$

%F
%

ME
L
$

$
$

$

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

>4
33
?=
04

'
!7

&#
7$

!#
'

#<
7

<!
#

!"
#$

>4
33
?=
04

&#
7$

!#
'

#<
7

<!
#

!"
#$

#"
$'

>4
33
?=
04

&#
7$

!#
'

#<
7

<!
#

!"
#$

#"
$'

!
OO
OO
O
OO
OO
O

!,
"

F:
G

/:
%

K:
E

!6
,"

H%
:K

!
OO
OO
O

F:
E

F:
G

/:
%

L:
K

FH
:/

HH
:F

!
OO
OO
OO

O!
PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

!,
"

!,
6

H:
G

#
OO
OO
O

E:
L

F:
G

M:
'

G:
K

F%
:/

H/
:H

OO
OO
O

#
E:
L

F:
G

M:
G

G:
G

FH
:K

HE
:H

OO
OO
O

#
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

E:
K

F:
%

H:
G

OO
OO
OO

$
E:
K

F:
'

M:
/

G:
H

F%
:H

H'
:H

//
:'

OO
OO
O

$
F:
'

M:
/

G:
H

FM
:/

H/
:F

HG
:L

OO
OO
O

$
O!

PQ
?E
R
OO
OO
OO

E:
'

F:
%

#,
'

%:
H

OO
OO
OO

'
F:
K

M:
H

G:
E

F/
:K

H%
:M

/'
:%

GE
:H

OO
OO
O

'
M:
M

G:
F

FH
:'

H/
:/

/F
:M

M'
:%

OO
OO
O

'
OO
OO
OO

E:
L

F:
F

H:
G

%:
%

G:
%

OO
OO
OO

!7
OO
OO
O

':
L

F%
:M

#6
,6

$'
,!

L%
:E

LL
:M

OO
OO
O

!7
':
L

!$
,"

#<
,#

/'
:/

%%
:'

OO
OO
O
OO
OO
O

!7
E:
G

F:
/

H:
M

<,
7

L:
E

OO
OO
OO

OO
OO
OO

&#
OO
OO
O
OO
OO
O

H'
:K

/G
:E

''
,7

FH
G:
H
OO
OO
O
OO
OO
O

&#
FM
:%

H/
:/

$7
,5

6&
,7

OO
OO
O
OO
OO
O
OO
OO
O

&#
F:
M

H:
%

%:
H

5,
<

OO
OO
OO

OO
OO
OO

OO
OO
OO

7$
OO
OO
O
OO
OO
O
OQ

>=
S
@R

OO
OO
O

!#
6,
#

OO
OO
O
OO
OO
O
OO
OO
O

7$
OO
OO
O

/'
:G

GE
:'

8-
9

OO
OO
O
OO
OO
O
OO
OO
O

7$
O!

PQ
?E
R

%:
M

L:
L

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

@A
A:B
:3
9B
C

'
!7

&#
7$

!#
'

#<
7

<!
#

!"
#$

@A
A:B
:3
9B
C

&#
7$

!#
'

#<
7

<!
#

!"
#$

#"
$'

@A
A:B
:3
9B
C

&#
7$

!#
'

#<
7

<!
#

!"
#$

#"
$'

!
OO
OO
O
OO
OO
O

!"
"

LM
FF
M

FF
M

!"
7

LF
!
OO
OO
O

FE
E

LM
FF
/

FF
F

GL
'K

!
OO
OO
OO

O!
PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

!"
"

'&
'G

#
OO
OO
O

LF
L'

KE
KL

K'
G'

OO
OO
O

#
LH

LG
KM

K'
LE

'M
OO
OO
O

#
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

L'
GG

''
OO
OO
OO

$
K/

GK
L/

KE
K%

LH
GE

OO
OO
O

$
LE

L'
KE

L/
G%

/M
OO
OO
O

$
O!

PQ
?E
R
OO
OO
OO

'/
G%

75
'%

OO
OO
OO

'
K'

LF
LL

KM
GK

GM
%%

OO
OO
O

'
LM

LL
GK

G'
'%

HL
OO
OO
O

'
OO
OO
OO

GG
%G

'G
'K

/G
OO
OO
OO

!7
OO
OO
O

L/
K'

'6
6<

''
M/

OO
OO
O

!7
L%

''
65

GM
/M

OO
OO
O
OO
OO
O

!7
GF

GE
%G

75
%E

OO
OO
OO

OO
OO
OO

&#
OO
OO
O
OO
OO
O

L/
GM

75
%E

OO
OO
O
OO
OO
O

&#
L%

G'
6&

<6
OO
OO
O
OO
OO
O
OO
OO
O

&#
'%

'/
''

<5
OO
OO
OO

OO
OO
OO

OO
OO
OO

7$
OO
OO
O
OO
OO
O
OQ

>=
S
@R

OO
OO
O

<"
OO
OO
O
OO
OO
O
OO
OO
O

7$
OO
OO
O

GM
%%

OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O

7$
O!

PQ
?E
R

''
%%

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

,I9J-17;J,,I9J-17;J,,I9J-17;J,

,I9J-17;J, ,I9J-17;J, ,I9J-17;J,

,I9J-17;J, ,I9J-17;J, ,I9J-17;J,

Figure 8.1: Matrices for scaling and 2D domain decomposition. Time is in hundredth of a second per single Runge-
Kutta stage. In the time-matrices, simulations that crashed because of too little memory (above diagonals) and page
problems (below diagonals) are marked by CR. If no measurement for a certain configuration was attempted, the cell is
left empty. For speed-up and efficiency all configurations not available are marked gray.

43

CHAPTER 8. SCALING

!"
#$
%&
'&
'(
#)
*+
,-
.

/(
0
12

-3
4(
56
72
*8
9:
(-
;(
<=
>#

?@
##
=

A2
87
,)
B(
>-

9;
7.
2

3
2*
9C
72
8(
;-

(DC
.2
-2

(E
F&
$E
G&
FH
&H
EF
F

!"
#$
%&
'!
(%
!"
#$
)*&

$+
,-)
&.

/)
01
20
34
5

6"
7(
%&
'!
(%
6"
7(
)*&

(+
,-)
&.

/)
01
20
34
5

6"
7(
%$
"6
8%
6"
7(
)*!

$+
,-)
&.

/)
01
20
34
5

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

.1
93
:;

4
(6

&$
8

$'
(

'&
$

&"
$6

$"
68

.1
93
:;

4
(6

&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

.1
93
:;

4
(6

&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

&
AK

AK
$

&
AK

AK
%L
EE

MH
F%

&
AK

AK
ME
H'

$
AK

AK
M/
FE

$
$

AK
AK

%N
GE

MM
EE

AK
$

AK
AK

MF
EE

AK

6
AK

AK
!!
("

&#
&"

$
6

AK
AK

'H
'E

MF
%E

HE
GE

6
AK

AK
HN
%E

HE
GE

$

8
AK

AK
M'
GE

FG
HE

FE
G%

$
8
AK

AK
6"
7&

HM
HM

FL
ME

8
AK

AK
MH
/E

FL
'E

$
$

&(
AK

M/
GE

FG
GE

FF
MM

$
$

&(
AK

$&
&'

HF
/E

&(
AK

$8
$"

HF
/E

$
$

$

!$
M/
ME

FL
ME

&"
"(

$
$

$
!$

/E
NM

HF
GE

&#
!'

!$
HN
FF

&#
6"

$
$

$
$

(6
FG
GE

FE
EL

$
$

$
(6

HF
%E

FL
GE

(6
HN
EE

FL
GE

$
$

$
$

$

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

<5
44
=>
15

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

<5
44
=>
15

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

<5
44
=>
15

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

&
OO
OO
O
OO
OO
O
O!

PQ
?E
R
OO
OO
O
OO
OO
OO

OO
OO
O

&
OO
OO
O
OO
OO
OO

OO
OO
O
OO
OO
O
OO
OO
O

F:
E

F:
L

&
O!

PQ
?E
R
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

F:
E

$
OO
OO
O
OO
OO
O
OQ

>=
S
@R

OO
OO
O

F:
E

OO
OO
O

$
OO
OO
O
OO
OO
OO

OO
OO
O
OO
OO
O

F:
E

F:
L
OO
OO
O

$
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

F:
E

OO
OO
OO

6
OO
OO
O
OO
OO
O
OQ

>=
S
@R

F:
E

H:
E

OO
OO
O

6
OO
OO
O
OO
OO
OO

OO
OO
O

E:
N

F:
L

H:
L
OO
OO
O

6
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

F:
E

F:
%

OO
OO
OO

8
OO
OO
O
OO
OO
O

E:
N

H:
E

M:
H

OO
OO
O

8
OO
OO
O
OO
OO
OO

F:
/

H:
%

M:
H
OO
OO
O
OO
OO
O

8
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

E:
N

F:
'

OO
OO
OO

OO
OO
OO

&(
OO
OO
O

F:
E

F:
N

M:
E
OO
OO
OO

OO
OO
O

&(
OO
OO
O
OO
OO
OO

H:
G

H:
G
OO
OO
O
OO
OO
O
OO
OO
O

&(
OO
OO
OO

O!
PQ
?E
R

F:
F

F:
/

OO
OO
OO

OO
OO
OO

OO
OO
OO

!$
F:
E

F:
N

M:
/
OO
OO
O
OO
OO
OO

OO
OO
O

!$
F:
/

H:
G

M:
M
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O

!$
O!

PQ
?E
R

F:
E

F:
G

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

(6
F:
N

M:
/

O!
PQ
?E
R
OO
OO
O
OO
OO
OO

OO
OO
O

(6
H:
G

M:
F
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O

(6
F:
E

F:
'

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

,I
9J
-1

7;
JB

?@
@:A
:4
9A
B

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

?@
@:A
:4
9A
B

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

?@
@:A
:4
9A
B

(6
&$
8

$'
(

'&
$

&"
$6

$"
68

6"
7(

&
OO
OO
O
OO
OO
O
O!

PQ
?E
R
OO
OO
O
OO
OO
OO

OO
OO
O

&
OO
OO
O
OO
OO
OO

OO
OO
O
OO
OO
O
OO
OO
O

FE
E

NE
&
O!

PQ
?E
R
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

FE
E

$
OO
OO
O
OO
OO
O
OQ

>=
S
@R

OO
OO
O

FE
E

OO
OO
O

$
OO
OO
O
OO
OO
OO

OO
OO
O
OO
OO
O

NG
LL

OO
OO
O

$
O!

PQ
?E
R
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

NL
OO
OO
OO

6
OO
OO
O
OO
OO
O
OQ

>=
S
@R

&"
&

&"
"

OO
OO
O

6
OO
OO
O
OO
OO
OO

OO
OO
O

NM
NH

GE
OO
OO
O

6
O!

PQ
?E
R
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

FE
M

GM
OO
OO
OO

8
OO
OO
O
OO
OO
O

NM
NN

GN
OO
OO
O

8
OO
OO
O
OO
OO
OO

F/
H

FH
%

GN
OO
OO
O
OO
OO
O

8
OO
OO
OO

OO
OO
OO

O!
PQ
?E
R

NM
LF

OO
OO
OO

OO
OO
OO

&(
OO
OO
O

NL
N'

G%
OO
OO
OO

OO
OO
O

&(
OO
OO
O
OO
OO
OO

FM
G

'L
OO
OO
O
OO
OO
O
OO
OO
O

&(
OO
OO
OO

O!
PQ
?E
R

FE
G

GF
OO
OO
OO

OO
OO
OO

OO
OO
OO

!$
NN

NM
8'

OO
OO
O
OO
OO
OO

OO
OO
O

!$
F/
H

FM
/

L/
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O

!$
O!

PQ
?E
R

FE
/

LG
OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

(6
N'

L%
O!

PQ
?E
R
OO
OO
O
OO
OO
OO

OO
OO
O

(6
FM
%

GL
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O
OO
OO
O

(6
FE
/

LF
OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

OO
OO
OO

,I9J-17;J, ,I9J-17;J,

,I9J-17;J, ,I9J-17;J, ,I9J-17;J,

,I9J-17;J, ,I9J-17;J, ,I9J-17;J,

,I9J-17;J,

Figure 8.2: More cases. Same legend as in Figure 8.1.

44

CHAPTER 8. SCALING

!"#$%&'()*+,-)./,01.)232,&0*4)+35'.)0*,3*,63+7*7

!" #$%&'()*+),(-./*-#01)2345)-6'6).-7-.'.)&8)9:9;
<" #$%&'()*+)/(*='11*(1)2>45)-6'6).-7-.'.)&8)9:?;

8 944)&)7*&:,-;5;.,<=,&057>,04,>2'((7>.,&'>7,
@)234 @)234

<)2>4 <)2>4

A6B9C ?;;D

99E; ABA; FED ?;;D

?BA; 9C;; G?D GHD

AHG FCA ??BD ??BD

9H; AGH 9H9; ?;;D ???D ?;ED

?CE B;F ?EA; GHD GHD GGD

F; ?H9 FG9 BA?; HCD HFD HBD H?D

AG5G FB AF; ?H?; 9??C 9G9; EFD HBD HAD H?D ?;9D ?;9D

BA CF 9GH ?;;E ?A;; ?HA; C;D CHD EBD E;D HHD GBD

%,?%177@$31A ",?!7+'10)*.>,175,B$150&>,175,C;CD,>7&0*@>A
@)234 @)234

<)2>4 <)2>4

?5; 95GA

?5F 95; 95H9 95GB

B59 B5C 959F 95AE

F5; F5? B59? B599

?E5; ?H5G ?H5; 95GA B5?C B5;?

9H5H 9G5; 9G5? 95AE 95AF 95C;

AG5? C;5B AH5; AC5H 95?B 959B 95;F 95;B

GG5E FB5; FA5? F?5? ?B;5F ?B;5F ?5FH 95;E 95;F 95;9 95F; 95F;

?9H59 ?AE5E ?E;5H ?CA5G ?FH5H 9?95? ?5A? ?5EB ?5HG ?5H9 95?F 95BC

9A6CHE B96HEG

9A6CHE B96HEG

9A6CHE B96HEG

9A6CHE B96HEGBGA HEG

?I?

9I?

AI?

GI?

JJ)0K-1)%'0(-=)-1)1$-0L&M')0*)=*%/L(')&'0N''#)
.-++'('#0)%L=K-#'1

?IB9 ?IB9

?IB9

BGA HEG A6;FE

?IB9

?I?

9I?

?I?E

?IG

?IA

?I9

AI?

GI?

BGA

?I9

HEG A6;FE ?B6G9A

?I?E

?IG

?IA

A6;FE ?B6G9A

?I?E

?IG

?IA

?I9

?I?

9I?

AI?

GI?

?IA

?I9

?I?

9I?

AI?

GI?

BGA HEG A6;FE ?B6G9A

?I?E

?IG

Figure 8.3: Scaling results in term of Speed-Up SW , Efficiency EW and Performance P as defined above.

(1%− 5% of the computational part, which is 0.5%-2.5% of the overall time). The operation count
of the rest of the algorithms is linear.

Given P , one can compute a virtual efficiency and speed-up ηv and Sv as

ηv :=
P

Pref
; Sv :=

N

Nref

P

Pref
(8.5)

with respect to a reference. Here, we use the same reference for all simulations and cases, namely, the
32 x 1 decomposition of the case with Q = 384 M. For larger numbers of cores N and simulation
sizes Q we always choose the optimum configuration which is marked by green color in Figures 8.1
and 8.2.

The scaling as described in the above paragraph is summarized in the tables shown in Figure 8.3.
The first table contains the real time needed for one Runge-Kutta stage, measure in hundredths of a
second. As already said before, these data is simply collected from the matrices on Figures 8.1 and
8.2. The other 3 tables in Figure 8.3 contain the corresponding values of P , ηv and Sv. Figure 8.4
shows the speed-up Sv. In the upper panel there is one line for each cases. Note, that the definition
of Sv does not imply that cases start on the linear scaling line. In this case, it is part of the
measurements and simply means that ηv ≈ 100% or P ≈ Pref .

45

CHAPTER 8. SCALING

!"##$%&"'()*+#,-.

!"

#"

$"

%"

!&"

'#"

&$"

!#%"

#(&"

'#" &$" !#%" #(&" (!#" !)#$" #)$%" $)*&" %!*#"

!"

$"

!&"

&$"

#(&"

'#" &$" !#%" #(&" (!#" !)#$" #)$%" $)*&" %!*#"

+,'%$-"

+,.&%-"

+,$/"

+,!#/"

012345"

+,#$/"

+,'#/"

)"

&$"

!#%"

!*#"

#(&"

)" !)#$" #)$%" ').#" $)*&" (!#)" &!$$" .!&%" %!*#"

+,.&%-"

+,$/"

+,!#/"

012345"

+,'%$-"

+,#$/"

+,'#/"

!"##$%&"'()*+#,-.

!"

!#"

!##"

!###"

$%" !%&" '!%" %#(&" &!)%"

*+,-"./,0123"

!"

("

!4"

4("

%'4"

$%" 4(" !%&" %'4" '!%" !#%(" %#(&" (#)4" &!)%"

56$&(7"

5684&7"

56(9"

56!%9"

:12+,;"

56%(9"

56$%9"

#"

4("

!%&"

!)%"

%'4"

#" !#%(" %#(&" $#8%" (#)4" '!%#" 4!((" 8!4&" &!)%"

5684&7"

56(9"

56!%9"

:12+,;"

56$&(7"

56%(9"

56$%9"

Figure 8.4: Upper panel: SW versus number of nodes for all geometries. Lower panel: maximum speedup for a given
number of processors max(SW)|N ; axes as in upper panel.

8.2 Scaling on the cluster blizzard@dkrz.de

To be done.

46

Bibliography

G. A. Blaisdell, E. T. Spyropoulos, and J. H. Qin. The effect of the formulation of nonlinear terms on aliasing errors
in spectral methods. App. Num. Math., 21:207–219, 1996.

M. H. Carpenter and C. A. Kennedy. Fourth-order 2N-storage Runge-Kutta schemes. Technical Report TM-109112,
NASA Langley Research Center, 1994.

M. H. Carpenter, D. Gottlieb, and S. Abarbanel. The stability of numerical boundary treatments for compact high-order
finite-difference schemes. J. Comput. Phys., 108:272–295, 1993.

G. Erlebacher, M. Y. Hussaini, H. O. Kreiss, and S. Sarkar. The analysis and simulation of compressible turbulence.
Theor. Comput. Fluid Dynamics, 2:73–95, 1990.

F. J. Higuera and R. D. Moser. Effect of chemical heat release in a temporally evolving mixing layer. CTR Report,
pages 19–40, 1994.

F. Q. Hu. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput.
Phys., 129:201–219, 1996.

F. Q. Hu, M. Y. Hussaini, and J. L.Manthey. Low-dissipation and low-dispersion Runge-Kutta schemes for computational
acoustics. J. Comput. Phys., 124:177–191, 1996.

A. G. Kravchenko and P. Moin. On the effect of numerical errors in large-eddy simulations of turbulent flows. J.
Comput. Phys., 131:310–322, 1997.

S. K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103:16–42, 1992.

G. Lodato, P. Domingo, and L. Vervisch. Three-dimensional boundary conditions for direct and large eddy simulation
of compressible viscous flows. J. Comput. Phys., 227:5105–5143, 2008.

H. Lomax, T. H. Pulliam, and D. W. Zingg. Fundamentals of Computational Fluid Dynamics. Springer, 1998.

J. P. Mellado and C. Ansorge. Factorization of the Fourier transform of the pressure-Poisson equation using finite
differences in colocated grids. Z. Angew. Math. Mech., 92:380–392, 2012.

R. K. Shukla and X. Zhong. Derivation of high-order compact finite difference schemes for non-uniform grid using
polynomial interpolation. J. Comput. Phys., 204:404–429, 2005.

P. R. Spalart, R. D. Moser, and M. M. Rogers. Spectral methods for the Navier-Stokes equations with one infinite and
two periodic directions. J. Comput. Phys., 96:297–324, 1991.

K. W. Thompson. Time-dependent boundary conditions for hyperbolic systems. J. Comput. Phys., 68:1–24, 1987.

K. W. Thompson. Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys., 89:439–461,
1990.

F. A. Williams. Combustion Theory. Addison Wesley, second edition, 1985.

J. H. Williamson. Low-storage Runge-Kutta schemes. J. Comput. Phys., 35:48–56, 1980.

R. V. Wilson, A. O. Demuren, and M. Carpenter. Higher-order compact schemes for numerical simulation of incom-
pressible flows. Technical Report CR-1998-206922, NASA Langley Research Center, 1998.

47

	Preface
	Governing equations
	Compressible formulation
	Multi-species compressible flows
	Multi-species compressible reacting flows

	Incompressible formulation

	Numerical Algorithms
	Spatial operators
	Derivatives
	Advection and Diffusion
	Filters
	Fourier transform
	Poisson equation
	Helmholtz equation

	Time marching schemes
	Explicit schemes
	Implicit schemes

	Boundary and Initial Conditions
	Background profiles
	Initial conditions
	Boundary conditions
	Compressible formulation
	Incompressible formulation
	Buffer zone

	Post-Processing Tools
	Averages
	Probability Density Functions
	Conditioning
	Two-point Statistics
	Summary of Budget Equations for Second-Order Moments
	Reynolds Stresses
	Energy Equation
	Scalar Variance

	Parallelization
	Domain decomposition

	Code
	Executables
	Input file dns.ini

	Grid
	Segments
	Explicit mappings (opts 5 and 6)
	Geometric progression algorithm (opts 4)

	Scaling
	Scaling on the cluster jugene@fz-juelich.de
	Strong Scaling
	Scaling from 32 to 8192 nodes

	Scaling on the cluster blizzard@dkrz.de

