1 Overview

For spatial discretization implicit schemes are used. Hence, the calculation of a derivative
always involves communication amongst all processors in a line along which a derivative is
computed. From ad-hoc considerations it is not clear which is the optimum two-dimensional
domain-decomposition. While for small numbers of cores one would expect the network
latency of an MPI-Call to dominate, for larger numbers it is the number of processors
involved in the call that makes MPI-calls expensive. Therefore, below a certain threshold, a
1D decomposition is expected to be beneficial. Where this turnover takes place is subject to
many factors such as the CPU clock speed, network latency, MPI-implementation, number
of grid points, etc. This section summarizes scaling tests that have been carried out on
various machines, in particular the clusters jugene@fz-juelich.de and blizzard@dkrz.de
in Aachen, respectively Hamburg.

Performance of the DNS code has been measured for various geometries varying the total
number of grid points by two orders of magnitude. We define Q) := ¢, X g, X g, the number
of grid points, as a measure of the size of the simulations and choose in the following to
label simulations by (. To label the simulations, we use the common abbreviations

k=20 M=2%  G=2% (1)

for readability. The memory necessary to save one 3D array in double precision data format
is 8 x @ Byte.
The scaling of the code is discussed in terms of Speedup S and Efficiency 7 defined as
T

S = =
Tref K

T x 100%. (2)

2 Scaling on the cluster jugene@fz-juelich.de

2.1 Overview

Many-core scaling properties (up to 32k) of the DNS code, Version 5.6.6 on the machine
jugenefz-juelich.de were investigated. Linear scaling is observed for up to 4096 MPI-
Tasks using about 2 — 4 x 220 grid points per processor. The maximum efficiency is usually
reached when simulations are carried out within one mid-plane. In this case for the standard
domain sizes of up to 4Gpoints, a slightly super-linear scaling is observed. The code scales
linearly up to 4096 processors for large domains of 24G-32G.

2.2 Setup

For measurements on jugene, the code has been instrumented to measure the real time that
is necessary to perform one sub-step of the five-step Runge-Kutta time-stepping scheme.
This corresponds essentially to the evaluation of the right-hand-side term of the governing
equations solved. The instrumented code has been run for 2 iterations, i.e. 10 Runge-Kutta
’sub’-steps and variance the variance of measured times was found to be of the order of 1%.
All simulations have been run in SMP mode using 40penMP threads. The cases considerer
here are listed in Table 1.

2.3 Strong Scaling

The total number of cores N available to a simulation are distributed as N =ims_npro =
ims npro.k X ims._npro_i in the directions of i (z) and k (z). A series of measurements
has been carried out to determine the optimum configuration for the six cases 1024x0192
- 4096x2048 listed in table 1. Scaling matrices are listed in Figure 1. In these matrices
the number of processors is constant along diagonals from the lower left to the upper right.



Name N, N, N, @

1024x0384 1024 1024 384 384M
2048x0192 2048 2048 192 768M
2048x1024 2048 2048 1024 4G

3072x1536 3072 3072 1536 12G
4096x1536 4096 4096 1536 24G
4096x2048 4096 4096 2048 32G

Table 1: Geometry and labels of the 3D cases.

In every matrix, the diagonal for V = 1k is outlined by solid borders. In each of these
diagonals, the best and worst configurations are marked by green, respectively red, color. In
these matrices, the speed-up and efficiency is for strong scaling, and always calculated with
respect to the runtime for the lowest number of cores with the lowest ims_npro_i. Efficiency
and speed-up are calculated as above.

2.4 Scaling from 32 to 8192 nodes

A strong scaling analysis over the entire range of nodes from 32 to 8192 is not possible.
Hence, we restrict ourselves to a scaling analysis where we consider the number of grid
points that is handled per processor and time unit. A straightforward definition for a metric
of Performance P is Q

P .= NT (3)
P is a metric that makes performance comparable over almost arbitrary problem sizes and
numbers of cores. Note, that the caveat here is the operation count for the Fourier transforms
which goes as ¢;logq; and ¢; ~ Q'/? if domains are expanded by the same factor in each
direction. Hence, for the overall operation count of the Fourier transforms Yppm we get

>
T o 3g;log gi = QY% log Q = Sppr o Qlog Q. (4)

(2

For the range of @ considered here, this effect is, however, small since the super-linear
contribution of Ygpr is only 1:)0gg33824(13/1 ~ 1.2 and the FFT accounts for a negligible part of the
computational time (1% — 5% of the computational part, which is 0.5%-2.5% of the overall
time). The operation count of the

Given P, one can compute a virtual efficiency and speed-up 7, and S, as

P N P

o Pref, Sv ' Nref Pref (5)

with respect to a reference. Here, we use the same reference for all simulations and cases

namely the 32 x 1 decomposition of the case with Q = 384M. For larger numbers of cores

N and simulation sizes (Q we always choose the optimum configuration which is marked by
green color in Figure 1.

The scaling as described in the above paragraph is summarized in Table 2 where the
real-time for one Runge-Kutta substep in hundredth of a second as well as P, 1, and .S,, for
each of the configuration that have been measured is listed. Figure 3 shows the speed-up
S,. In the upper panel there is one line for each cases. Note, that the definition of S, does
not imply that cases start on the linear scaling line. In this case, it is part of the
measurements and simply means, that 7, ~ 100% or P ~ P,.

3 Scaling on the cluster blizzard@dkrz.de



1024x0384x1024 (384M), 1RK substep 2048x0192x2048 (768M), 1RK substep 2048x1024x2048 (4G), 1RK substep

ims_npro_k ims_npro_k ims_npro_k
Runtime 8 16 256 512| 1024 Runtime 32 64 128 256 512| 1024 2048| Runtime 32 64 128 2048
Z 1 1 4340 2610 2 1|
S - S
3 5 3
3 2 2515 1195 2 2| 5325- 1167 3 2|
2 S S
1280 600 E 2725 4260| 18
1313 2400 1021 493]
ims_npro_k ims_npro_k ims_npro_k
Speed-up 8 16 32 Speed-up 32 64 128 256 512 1024 2048 Speed-up 32 64 128 256 1024 2048
z 1 E E
5 S s
3 3 3
3 2 17 E E
4] 09 34
8| 1,9 32 7,0
16|
32
64 64 46,7 70,6 dns
ims_npro_k ims_npro_k
Efficiency 128 256 512 1024 Efficiency 32 64 128 256 512| 1024 2048| Efficiency 32 2048|
z 1 2 1 100 83 2
S S S
3 3 3
‘3 2| ‘a 2| 82 87 93 Ia
4 4 80 86 90
8| 8| 83 88 79
16 16 85 16
32 32] 85 76 32|
64 64 73 55 64
3072x1536x3072 (12G), 1RK substep 4096x1536x4096 (16G), 1RK substep 4096x2048x4096 (32G), 1RK substep
ims_npro_k ims_npro_k
Runtime 64 128 256 512 1024 2048 Runtime 64 128 256 512| 1024 2048 4096 Runtime 64 128 256 512 1024 2048 4096
E 1] é 1] CR CR 5800 3215 E 1] 3026
I: I: ‘:
3 2| =l 2| 5970 R 3 2|
Ic Ic \O
- 4 - 4 3150 2070 - 4 2950 2070 -
8| 8|CR 2323| 1830 8|CR 1860 - -
16| 16|CR 16|CR - -
32] 32] 4093 2170 32] - -
64] 1770 1008 - 64| 2150 1870 64 2900 1870 - - -
ims_npro_k ims_npro_k ims_npro_k
Speed-up 64 128 256 512 1024 2048| Speed-up 64 128 256 512| 1024 2048 4096 Speed-up 64 128 256 512| 1024 2048 4096
Fl 3 18| 3 10
I: I: ‘:
] 2 1,0 2 1,0
Ic Ic \Q
- - 1,8 - 10 15
32 16
32] 1,0
64 19 34 64 1,0 1,6
ims_npro_k ims_npro_k ims_npro_k
Efficiency 64 128 256 512| 1024 2048 Efficiency 64 128 256 512| 1024 2048 4096 Efficiency 64 128 256 512| 1024 2048 4096
3 3 1] 100 9| 3 1] 100
'S 'S ‘:
g 2 2| 97 2 2| 98
3 3 K
- - 4 92 70 - 4 103 73
8| 79 8| 81
16| 16|
32| 142 134 32| 104
64] 135 78 64| 104 81
Figure 1: Matrices for scaling and 2D domain decomposition. Time is in hundredth of a second per single RK-

substep. In the time-matrices, simulations that crashed because of too little memory (above diagonals)
and page problems (below diagonals) are marked by CR. If no measurement for a certain configuration
was attempted, the cell is left empty. For speed-up and efficiency all configurations not available are
marked gray.



T Efficiency w.r.t 32 cores of smallest case

e 384 768| 4.096 13.824] 24.576 32.768| e 384 768| 4.096 13.824 24.576 32.768

N k] N [k]

1/32 4.325 1/32 100%

1/16 2260 4340 1/16 96% 100%

1/8 1340 2500 1/8 81% 87%

1/4 478 954 1/4 113% 113%

1/2 270 487| 2720 1/2 100% 111%| 106%

1/1 156 309 1640 1/1 87% 87%| 88%

2/1 90 172 982 3410 2/1 75%  79%| 73% 71%

4/1 48,8 93| 490 1710 2115 2820 4/1 69% 73%| 74% 71% 102% 102%

8/1 34 59 287 1006 1400 1740 8/1 50% 57%| 63% 60% 77% 83%
S (Speed-up) Q/T/N Megapoints per k-procs per second

sl 384  768| 4.096 24.576 32.768 s 384 768| 4.096 13.824 24.576 32.768

N [K] N (k]

1/32 1,0 n/a 1/32 2,84 n/a

1/16 1,9 2,0 1/16 2,72 2,83

1/8 3,2 3,5 1/8 2,29 2,46

1/4 9,0 9,1 1/4 3,21 3,22

1/2 16,0 17,8 17,0 1/2 2,84 3,15 3,01

1/1 27,7 28,0 281 1/1 2,46 2,49 2,50

2/1 48,1 50,3 47,0 45,7 2/1 2,13 2,231 2,09 2,03

4/1 88,6 93,01 94,1 91,1 130,9 130,9| 4/1 1,97 2,06 2,09 2,02 2,90 2,90

8/1 127,2 146,6| 160,7 154,8' 197,7 2121 8/1 1,41 1,63 1,78 1,72 2,19 2,35

Figure 2: Scaling results in term of Speed-Up Sw, Efficiency Ew and Performance P as defined above.
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Figure 3: Upper panel: Sy versus number of nodes for all geometries. Lower panel: maximum speedup for a given
number of processors max(Sw)|n; axes as in upper panel.



