Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis.

MPG-Autoren
/persons/resource/persons142046

Kohansalnodehi,  M.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14947

Chua,  J. J.
Research Group of Protein Trafficking in Synaptic Development and Function, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15266

Jahn,  R.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons196576

Czernik,  D.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2305935.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

2305935_Suppl.pdf
(Ergänzendes Material), 6MB

Zitation

Kohansalnodehi, M., Chua, J. J., Urlaub, H., Jahn, R., & Czernik, D. (2016). Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis. eLife, 5: e14530. doi:10.7554/eLife.14530.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-E46A-D
Zusammenfassung
Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity.