English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty

MPS-Authors
/persons/resource/persons104675

Bittner,  Matthias
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37320

Schmidt,  Hauke
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37356

Timmreck,  Claudia
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37338

Sienz,  Frank
Decadal Climate Predictions - MiKlip, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Bittner, M., Schmidt, H., Timmreck, C., & Sienz, F. (2016). Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophysical Research Letters, 43, 9324-9332. doi:10.1002/2016GL070587.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-8587-E
Abstract
The observed strengthening of the Northern Hemisphere (NH) polar vortex after tropical volcanic eruptions appears to be underestimated by coupled climate models. However, there are only a limited number of observed eruptions, which makes the attribution of volcanic signals difficult, because the polar vortex is also influenced by other external forcing factors as well as internal variability. We show with a 100-member ensemble of historical (1850–2005) simulations with the Max Planck Institute Earth System Model that an ensemble larger than what is provided by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models is needed to detect a statistically significant NH polar vortex strengthening. The most robust signal can be found when only the two strongest eruptions (Krakatau and Pinatubo) are considered in contrast to including smaller eruptions to increase the sample size. For these two strongest eruptions, the mean of 15 CMIP5 models shows a statistically significant strengthening of the NH polar vortex as well.