Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electronic Structure of the Dark Surface of the Weak Topological Insulator Bi14Rh3I9

MPG-Autoren
/persons/resource/persons126823

Ruck,  Michael
Michael Ruck, Max Planck Fellow, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pauly, C., Rasche, B., Koepernik, K., Richter, M., Borisenko, S., Liebmann, M., et al. (2016). Electronic Structure of the Dark Surface of the Weak Topological Insulator Bi14Rh3I9. ACS Nano, 10(4), 3995-4003. doi:10.1021/acsnano.6b00841.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-C5E2-D
Zusammenfassung
Compound Bi14Rh3I9 consists of ionic stacks of intermetallic [(Bi4Rh)(3)I](2+) and insulating [Bi2I8](2-) layers and has been identified to be a weak topological insulator. Scanning tunneling microscopy revealed the robust edge states at all step edges of the cationic layer as a topological fingerprint. However, these edge states are found 0.25 eV below the Fermi level, which is an obstacle for transport experiments. Here, we address this obstacle by comparing results of density functional slab calculations with scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. We show that the n-type doping of the intermetallic layer is intrinsically caused by the polar surface and is well-screened toward the bulk. In contrast, the anionic "spacer" layer shows a gap at the Fermi level, both on the surface and in the bulk; that is, it is not surface-doped due to iodine desorption. The well-screened surface dipole implies that a buried edge state, probably already below a single spacer layer, is located at the Fermi level. Consequently, a multilayer step covered by a spacer layer could provide access to the transport properties of the topological edge states. In addition, we find a lateral electronic modulation of the topologically nontrivial surface layer, which is traced back to the coupling with the underlying zigzag chain structure of the spacer layer.