Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane

Highlights

- Human VDAC1 in the membrane is structurally flexible
- The β barrel of human VDAC can stepwise unfold β hairpins
- Ca²⁺ considerably decreases the conformational variability of hVDAC1
- Ca²⁺ considerably decreases the free energy stabilizing hVDAC1

Authors

Lin Ge, Saskia Villinger, Stefania A. Mari, ..., Stefan Becker, Daniel J. Müller, Markus Zweckstetter

Correspondence

daniel.mueller@bsse.ethz.ch (D.J.M.), markus.zweckstetter@dzne.de (M.Z.)

In Brief

VDAC is the primary gatekeeper of mitochondria. Ge et al. use single-molecule force spectroscopy in combination with NMR spectroscopy to show that the membrane-embedded barrel of human VDAC is highly flexible. Because calcium considerably decreases the pore’s conformational variability, this modulation might provide the means to influence VDAC function.
Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane

Lin Ge,1,5 Saskia Villinger,2,5 Stefania A. Mari,1 Karin Giller,2 Christian Griesinger,2 Stefan Becker,2 Daniel J. Müller,1,* and Markus Zweckstetter2,3,4,*
1Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
2Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
3Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany
4Department of Neurology, University Medical Center Göttingen, University of Göttingen, Am Waldweg 33, 37073 Göttingen, Germany
5Co-first author
*Correspondence: daniel.mueller@bsse.ethz.ch (D.J.M.), markus.zweckstetter@dzne.de (M.Z.)
http://dx.doi.org/10.1016/j.str.2016.02.012

SUMMARY

The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy, we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca2+, a key regulator of metabolism and apoptosis, considerably decreases the barrel’s conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.

INTRODUCTION

VDAC is the most abundant protein in the outer mitochondrial membrane and is the only known pathway for metabolites and small ions into the mitochondrial matrix (Bathori et al., 2006; Benz, 1994; Gincel et al., 2001; Shoshan-Barmatz et al., 2010a; Tan and Colombini, 2007). VDAC has been implicated as a critical regulator of apoptosis (Shoshan-Barmatz et al., 2010a; Bathori et al., 2006), while others reported that it has no influence on channel gating (Rostovtseva et al., 2005). In addition, two Ca2+-binding sites have been suggested on the basis of bilayer measurements of VDAC mutants (Israelson et al., 2007, 2008). However, direct evidence for the influence of Ca2+ on mitochondrial membrane permeabilization is still missing.

Here we provide insights into the molecular nature of the conformational transitions that occur in a single membrane-embedded human VDAC channel. Using single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy, we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca2+, a key regulator of metabolism and apoptosis, considerably decreases the barrel’s conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.
spectroscopy in combination with nuclear magnetic resonance (NMR) spectroscopy, we show that the molecular plasticity of VDAC lies up to one order of magnitude above that determined for β strands of other transmembrane proteins. VDAC’s mechanical flexibility is strongly decreased by Ca²⁺ and Mg²⁺, suggesting that VDAC function is regulated by deformations of its channel structure.

RESULTS

Single-Molecule Force Spectroscopy of hVDAC1 in Membranes

To quantify the conformational variability within isoform 1 of human VDAC (hVDAC1), which is the primary channel protein involved in ion transport and cellular apoptosis, we recombinantly produced pure hVDAC1 and reconstituted it into lipid membranes. Using solid-state NMR spectroscopy in combination with electrophysiological measurements, we and others have previously demonstrated the structural and functional integrity of the liposome-reconstituted hVDAC1 channel (Bauer et al., 2009; Eddy et al., 2012, 2015; Schneider et al., 2010; Zachariae et al., 2012). Next, we imaged the membrane-embedded protein by atomic force microscopy (AFM) (Figure 1). The membranes had a rather smooth appearance and showed densely packed pores formed by hVDAC1. The arrangement of the pores indicates that hVDAC1 assembles into heterogeneous oligomeric forms, in agreement with previous reports and the localization of hVDAC1 in distinct domains in the outer membrane of mitochondria (Hoogenboom et al., 2007; Neumann et al., 2010). After AFM imaging, the AFM tip was pushed onto densely packed hVDAC1 assemblies to facilitate the non-specific attachment to one of the termini of an individual channel (Figure 2A). Withdrawal of the AFM tip stretched the terminus and induced stepwise unfolding of the protein resulting in a characteristic saw-tooth like force-distance (FD) curve (Figure 2B). To this end, only FD curves corresponding to the fully stretched length (>75 nm) of an unfolded hVDAC1 polypeptide were analyzed (Bippes and Muller, 2011; Oesterhelt et al., 2000). At distances >100 nm, the FD curves detected no interactions suggesting that the channel has been fully unfolded and extracted from the membrane. It has been shown that the non-specific attachment of the terminus to the AFM tip is transient and that the unfolded polypeptide slips off the tip after a few seconds (Oesterhelt et al., 2000). Thus, after a waiting time of a few seconds, the tip was ready to attach a new hVDAC1 molecule and to record the next unfolding FD curve. The individual unfolding curves of single hVDAC1 channels revealed a series of force peaks, which varied in occurrence demonstrating that the unfolding steps have a certain probability to occur and that multiple unfolding pathways coexist (Figure 2B). We then performed a superposition of all FD curves. The superposition revealed a common pattern of predominant unfolding force peaks that best describes the mechanical unfolding pathway of hVDAC1 (Figure 3A). Each peak of this pattern corresponds to a reoccurring unfolding event toward the complete unfolding and extraction of a single hVDAC1 molecule from the lipid membrane. The unfolding intermediates identified in this way are thus common to different unfolding pathways of hVDAC1.

To assign the unfolding intermediates and reveal the average contour length (in amino acids [aa]) of the unfolded hVDAC1 polypeptide, stretched between the AFM tip and the membrane, we fitted every unfolding force peak to a worm-like-chain (WLC) model (Figures 3A and 3B). The adhesion force peaks detected at contour lengths of 1–5 aa lay within the contact region (≤5 nm) of the tip and membrane where unspecific interactions dominate the forces detected by force spectroscopy (Oesterhelt et al., 2000; Thoma et al., 2012). These unspecific interaction forces are thus not correlated to the polypeptide sequence/structure. The analysis identified the first hVDAC1 specific force peak at a contour length of 15 ± 10 aa (average ± SD) and the last peak at 253 ± 10 aa (Figure 3B). Although the last force peak showed a low occurrence, its existence and the fact that the preceding force peak pattern overlaps with the force peaks of all other superimposed force curves, confirmed that the force curves belong to the same unfolding pathway of the hVDAC1 channel. As demonstrated frequently, this unfolding spectrum is specific for the point of attachment of the AFM tip to the terminal end of the membrane protein and for the lipid environment, ligand binding, and functional state of the membrane protein (Bippes et al., 2013; Engel and Gaub, 2008; Ge et al., 2011; Kedrov et al., 2005; Zocher et al., 2012). The N-terminal end preceding the first β strand of the hVDAC1 barrel comprises 28 residues, while the C-terminal end following the last β strand (β9) comprises only 8 aa. From the example of various α-helical and β barrel transmembrane proteins, it has been shown that the last force peak of the unfolding force spectrum usually records the last unfolding step of a single or of grouped secondary structure elements (Oesterhelt et al., 2000; Sapra et al., 2009; Thoma et al., 2012; Zocher et al., 2012). Assuming that the AFM tip pulls hVDAC1 from the N-terminal end and that the
last β strand β19 will be unfolded last, then the force spectrum could extend to a contour length of at least 240 aa. If, however, the AFM tip mechanically unfolds hVDAC1 from the C-terminal end, then the force spectrum would be =20 aa shorter. Thus, only when the AFM tip preferentially attaches to the N terminus can the force peak at 253 ± 10 aa correspond to the unfolding of a transmembrane segment of hVDAC1.

On the basis of the determined contour lengths of the unfolded polypeptide stretches, we then identified the unfolding intermediates (Figures 3B and 3C): The first force peak at a contour length of 15 ± 10 aa is caused by the stretching of the flexible N-terminal domain of hVDAC1 until the α helix together with the first β strand unfold in a single step. The unfolding event releases the force causing the peak pattern in the FD curve. Subsequently, the chain is further stretched up to the next unfolding event at 40 ± 3 aa, which detects the unfolding of the β strand β2, followed by the force peak at 57 ± 3 aa that is caused by the unfolding of β3. All subsequent unfolding intermediates were composed of two adjacent β strands. The force peak at 253 ± 10 aa was only weakly populated, consistent with a low residual stabilization of the protein in the membrane after 17 β strands were already mechanically unfolded.

Kinetic, Conformational, and Mechanical Properties of hVDAC1

The average force detected in each unfolding step characterizes the strength of the interaction that stabilizes a structural segment (e.g., β strand or β hairpin) against unfolding (Figure 3A). On average, the unfolding of a structural segment of hVDAC1 required forces of ~50–100 pN. However, these unfolding forces depend on the loading rate, which describes the force applied by the pulling AFM tip over certain time periods (Evans and Ritchie, 1997; Janovjak et al., 2008). Probing these unfolding forces at different loading rates allows extrapolation of the lifetime, which is the reciprocal of the unfolding rate at zero force, \(k_0 \), the transition state distance, \(x_s \), the kinetic unfolding free energy, \(\Delta G^0 \), and the mechanical spring constant, \(\kappa \). To approach the unfolding forces at different loading rates, we unfolded hVDAC1 at velocities of 100, 300, 600, 1,200, 2,400, and 5,000 nm s\(^{-1}\) when separating the AFM tip from the membrane (Figure S1). From these FD curves, we extracted the dynamic single-molecule force spectroscopy (DFS) plots (Experimental Procedures and Figure S2). By fitting them with the Bell-Evans model (Evans and Ritchie, 1997; Janovjak et al., 2008), we derived the parameters that describe the mechanic and kinetic properties of every
structural segment of the membrane-embedded hVDAC1 channel (Table 1 and Table S1).

The width of the energy valley, which stabilizes the folded structure, can be estimated from the distance, \(x_u \), that separates the folded and transition state toward unfolding (Figure S3). If a folded structural segment is stabilized by a wider energy valley, it can adopt more conformational states compared to a segment stabilized by a narrower energy valley (Evans and Ritchie, 1997; Janovjak et al., 2008). Widening the energy valley thus allows a structural segment to increase its conformational variability. Structural segments established by \(\beta \) strands and \(\beta \) hairpins of hVDAC1 showed transition states ranging from 0.54 to 1.25 nm (Table 1). The transition rate, \(k_0 \), characterizing their kinetic stability, ranged from \(1.8 \times 10^{-14} \) to 0.52 s\(^{-1}\) and the corresponding kinetic free energy (\(\Delta G^0 \)) from 21.4 to 31.6 kBT. The mechanical rigidity, \(\kappa \), of individual \(\beta \) hairpins was as low as 0.17 N m\(^{-1}\) and reached at most 0.65 N m\(^{-1}\).

Next, we asked how the kinetic, conformational, and mechanical properties vary for individual \(\beta \) strands and \(\beta \) hairpins of hVDAC1. Table 1 shows that the \(x_u \) values were lowest (0.70 nm) for \(\beta \) hairpins \(\beta8-\beta9 \), \(\beta12-\beta13 \), \(\beta14-\beta15 \), \(\beta16-\beta17 \), \(\beta18-\beta19 \) and highest (>0.90 nm) for \(\beta \) strand \(\beta1 \) and \(\beta \) hairpins \(\beta4-\beta5 \), \(\beta6-\beta7 \), and \(\beta10-\beta11 \). In addition, \(\kappa \) values were lowest (<0.40 N m\(^{-1}\)) for \(\beta \) strands \(\beta1 \), \(\beta2 \), and \(\beta3 \), and for \(\beta \) hairpins \(\beta4-\beta5 \), \(\beta6-\beta7 \), and \(\beta10-\beta11 \), and highest for \(\beta \) hairpins \(\beta8-\beta9 \), \(\beta12-\beta13 \), \(\beta14-\beta15 \), \(\beta16-\beta17 \), and \(\beta18-\beta19 \). Thus, the N-terminal region exposes lower mechanical rigidity and occupies a larger number of conformational states than the rest of the VDAC \(\beta \) barrel.

Interaction of Ca\(^{2+}\) with hVDAC1

Next we questioned whether and where Ca\(^{2+}\) interacts with hVDAC1. To localize potential Ca\(^{2+}\)-binding sites in hVDAC1, we performed NMR measurements of hVDAC1 solubilized in detergent. NMR signals constitute excellent probes of complex formation (Craik and Wilce, 1997). Identification of the interaction interface is enabled by the resonance-specific assignment of the backbone signals of hVDAC1, which we had improved to 97% for the barrel residues (Villinger et al., 2010). Upon addition of increasing concentrations of Ca\(^{2+}\), amide backbone resonances...
Ca2+ Decreases Conformational Variability and Increases Mechanical Rigidity

Having detected that Ca2+ can bind to hVDAC1, we wanted to characterize whether this binding changes the energetic, kinetic, and structural properties of the channel. To this end, we performed DFS of membrane-embedded hVDAC1 in the presence of 5 mM Ca2+ (Figure S1). The DFS plot of every structural segment was fitted using the Bell-Evans model (Figure S2) to approximate their kinetic, energetic, and mechanical properties (Table 1). The analysis showed that addition of Ca2+ considerably changed the mechanical strength and flexibility, as well as the kinetic and energetic stability of hVDAC1: the x_n values, which characterize the conformational variability of hVDAC1, decreased by a factor of ~2 for β strands $\beta 2$ and $\beta 3$, as well as the hairpins $\beta4$-$\beta5$ and $\beta14$-$\beta15$. In addition, the mechanical rigidity, as reported by κ, increased in the presence of Ca2+ in β strand $\beta 2$ by approximately a factor of 4 and for $\beta 3$ and $\beta14$-$\beta15$ by a factor of ~3.

DISCUSSION

Conformational changes determine the function of VDAC, the gatekeeper of mitochondria (Hiller and Wagner, 2009; Shoshan-Barmatz et al., 2010a; Song et al., 1998; Teijido et al., 2012; Thomas et al., 1993; Ujwal et al., 2008; Villinger et al., 2010). Little is known, however, about the nature of these structural changes, because the quantitative analysis of conformational transitions in membrane proteins when embedded into a lipid bilayer is highly challenging. To overcome these challenges, we combined single-molecule force spectroscopy with NMR...
measurements. Single-molecule force spectroscopy was used to quantify molecular interactions and larger interaction networks, which stabilize different functional states of single hVDAC1 channels in the absence and presence of Ca\(^{2+}\) and Mg\(^{2+}\), while NMR spectroscopy provided complementary information about the binding of Ca\(^{2+}\) and Mg\(^{2+}\) to the hVDAC1 channel.

Our study showed that hVDAC1 preferentially unfolds via intermediates, which are composed of \(\beta\) hairpins (Figures 2 and 3). This stepwise unfolding is very different from the almost spontaneous force-induced unfolding of the water-soluble \(\beta\) barrel protein GFP (Dietz and Rief, 2004). When unfolding water-soluble proteins, the exposure of their hydrophobic core to the hydrophilic aqueous solution is one of the driving forces leading to destabilization. Thus, applying a mechanical force to initiate unfolding is often sufficient to complete their unfolding (Borgia et al., 2008). In contrast, the anisotropic environment of the lipid bilayer contributes to the structural stability of a membrane protein, so that unfolding forces must be repetitively applied until the entire protein has been unfolded (Hensen and Muller, 2013).

Single-molecule force spectroscopy of membrane proteins can therefore provide access to a variety of conformational and kinetic parameters of individual membrane-embedded structural segments (Figure S3). This includes the distance \(x_u\) from the folded state to the transition state toward unfolding, which approximates the width of the energy valley that stabilizes the folded structure. Our analysis revealed that \(x_u\) values in hVDAC1 were ~30%–50% larger than those determined for \(\alpha\) helices of most transmembrane proteins (Janovjak et al., 2008), and comparison with results for the transmembrane \(\beta\) barrel of OmpG suggested the same trend (Damaghi et al., 2010). In addition, we obtained quantitative information about the mechanical rigidity of the hVDAC1 channel, which is comparable with that of different transmembrane \(\alpha\) helices (Kawamura et al., 2013; Zocher et al., 2012), but is a factor 2–10 below that of the \(\beta\) strands of the transmembrane \(\beta\) barrel protein OmpG (Damaghi et al., 2010). In addition, the superimposed force curves recorded upon unfolding of hVDAC1 (Figure 3) showed a noise, which lay above that observed upon mechanically unfolding the \(\beta\) barrel outer membrane proteins OmpA, OmpG, and FhuA from Escherichia coli (Bosshart et al., 2012; Sapra et al., 2009; Thoma et al., 2012). This noise, which indicates small variabilities among the force curves, further supports that \(\beta\) strands and \(\beta\) hairpins of hVDAC1 are structurally more variable than those of bacterial transmembrane \(\beta\) barrels.

Another key finding of our study is that the mechanical properties strongly vary in different parts of the hVDAC1 barrel, when the protein is incorporated into its native environment provided by the lipid bilayer (Figure 5). In particular, the N-terminal part formed by strands \(\beta 1\)-\(\beta 7\) and \(\beta 10\)-\(\beta 11\) showed lower mechanical rigidities and populated a higher number of conformational states. Notably, the enhanced mechanical flexibility in the N-terminal part of the liposome-embedded hVDAC1 barrel correlates...
with the more flexible nature of this region when hVDAC1 was solubilized in detergent; high-resolution NMR studies showed that hydrogen/deuterium exchange is more rapid in the N-terminal part of the hVDAC1 barrel, indicating that the hydrogen bonds, which connect the β strands, are less stable (Bayrhuber et al., 2008; Villinger et al., 2010). In addition, extensive microto millisecond dynamics were detected in the N-terminal β strands of detergent-solubilized hVDAC1 (Bayrhuber et al., 2008; Villinger et al., 2010), consistent with a higher number of conformational states detected by single-molecule force spectroscopy. Because lipid bilayer measurements showed that several residues in the N-terminal part of the VDAC barrel are important for gating (Thomas et al., 1993), our results further suggest that a high conformational entropy and low mechanical rigidity in the N-terminal β strands play a crucial role for VDAC gating. In addition, our study highlights the potential of combining NMR spectroscopy with single-molecule force spectroscopy. While NMR spectroscopy can characterize the flexibility of membrane proteins on a wide range of timescales, particularly when solubilized in detergent, and thus provide insight into fast and slow structural processes, single-molecule force spectroscopy directly quantifies the underlying forces. As such, single-molecule force spectroscopy of membrane proteins can provide information complementary to solid-state NMR spectroscopy.

Mutation studies and photoreactive crosslinking suggested that hVDAC1 contains at least two Ca²⁺-binding sites, which involve glutamate residues at position 73 and 203 (Israelsen et al., 2007), while a Ca²⁺ ion was complexed by two E73 side chains in the asymmetric dimer in the crystal structure of mouse VDAC1 (Ujwal et al., 2008). In addition, molecular dynamics simulations and Poisson-Boltzmann calculations suggested a preferred localization of monovalent cations at the N-terminal β strands inside the pore (Choudhary et al., 2010; Rui et al., 2011). Using NMR spectroscopy, we showed that Ca²⁺ ions, as well as Mg²⁺ ions, bind with low affinity to hVDAC1 (Figure 4). In particular residues located in the N-terminal five β strands were perturbed in the presence of Ca²⁺ ions, in agreement with the observation made by single-molecule force spectroscopy that Ca²⁺ and Mg²⁺ strongly increase the mechanical flexibility of this functionally critical region of the hVDAC1 channel (Table 1). Notably, solid-state NMR spectroscopy of hVDAC1 reconstituted into liposomes has identified several structural features including the N-terminal α helix (Bauer et al., 2011; Eddy et al., 2015; Schneider et al., 2010; Zachariae et al., 2012), which is in agreement with the 3D structure of hVDAC1 determined in detergent (Bayrhuber et al., 2008; Hiller et al., 2006) and indicates that hVDAC1 embedded in the membrane exists in a properly folded conformation.

High concentrations of Ca²⁺ and Mg²⁺ strongly increased the conformational stability of the N-terminal part of the hVDAC1 channel (Figure 5). This change in the molecular plasticity can either be caused by direct binding of Ca²⁺ to the channel, as supported by NMR spectroscopy, crosslinking studies (Israelsen et al., 2007), and crystallography (Ujwal et al., 2008), or be a consequence of the influence of divalent ions on the molecular properties of lipid bilayers (Pabst et al., 2007; Petračhevá et al., 2006). For example, localization of Ca²⁺ at the water/lipid interface (Bockmann and Grubmüller, 2004) can change the rigidity of the lipid bilayer and thus modulate the number of conformational states sampled by hVDAC1. Notably, transient Ca²⁺ pulses with high local concentrations, so-called Ca²⁺ microdomains (Rizzuto and Pozzan, 2006), might be important, because physiological steady state concentrations of Ca²⁺ in the cytosol are in the sub-micromolar range (Bathori et al., 2006). In addition, even low Ca²⁺ concentrations can influence VDAC’s molecular plasticity through Ca²⁺-mediated dimerization (Guo et al., 1995; Hooegenboom et al., 2007; Mannella, 1982; Ujwal et al., 2008; Zalk et al., 2005). Because both mitochondrial Ca²⁺ overload and oligomerization of VDAC1 have been related to the induction of apoptosis (Crompton, 1999; Keinan et al., 2010; Shoshan-Barmatz et al., 2010b), our data suggest a possible connection of the two mechanisms.

In summary, we showed that the molecular plasticity of human VDAC exceeds that so far observed of other transmembrane β barrel proteins, with Ca²⁺, a key regulator of metabolism and apoptosis, strongly decreasing its plasticity. In vivo, however, other proteins such as the 18 kDa translocator protein TSPO (Gut et al., 2015; Jaremkó et al., 2014), which is found in large complexes together with VDAC (Gafà et al., 2014), might further alter the conformational variability and thus the function of VDAC.

EXPERIMENTAL PROCEDURES

Expression and Reconstitution of hVDAC1

Expression, refolding, and purification of hVDAC1 was done as previously described (Engelhardt et al., 2007). The utilized plasmid showed the insertion of three additional amino acids (RGS) between the N-terminal methionine and the second residue of the hVDAC1 sequence (final N terminus, ¹RMRGSAVPPTY²) and of two amino acids (aa) at the C terminus (RS), prolonging the sequence to 288 amino acids. For better folding properties (Bayrhuber et al., 2008), a His₆-tag was present at the C terminus. For reconstitution into dimyristoylphosphatidylcholine (DMPC) liposomes, the protein was transferred into reconstitution buffer (25 mM Bis-Tris [pH 6.8], 100 mM NaCl, 0.3% lauryldimethylamine-N-oxide [LDAO]) using a desalting column. To form a lipid film, DMPC was dissolved in methanol/chloroform (1/1) and dried in a nitrogen stream followed by lyophilization to remove any organic solvents. Liposomes were generated after addition of reconstitution buffer to the film by sonication for 3 × 10 min in an ice-cooled sonication bath at 100% intensity settings. The protein in reconstitution buffer was added to the liposomes at a final protein/DMPC ratio of 1/50 (mol/mol). After incubation for 1 hr at room temperature, the detergent was removed with Calbiochem resin (Calbiochem) at a ratio of 1:1 g resin/33 mg LDAO by incubation on a tilting shaker. After 5 hr of incubation, the mixture was loaded onto a sintered glass funnel. The liposomes were collected in the flow through and by washing the resin with detergent-free reconstitution buffer. The liposomes were pelleted by ultracentrifugation at 109,000 × g and washed twice with 25 mM Bis-Tris (pH 6.8). Finally the lipidic pellet was re-dissolved in 25 mM Bis-Tris (pH 6.8), at a theoretical protein concentration of 1 mg ml⁻¹.

AFM Imaging

For AFM imaging, hVDAC1 membranes were adsorbed to freshly cleaved mica (30 min) in buffer solution (pH 6.8, 25 mM Bis-Tris-HCl). Loosely attached membranes were washed off with the same buffer solution. AFM topographs were recorded in the same buffer solution and at room temperature (24°C) using contact mode. To conduct AFM experiments in the presence of divalent ions, 5 mM CaCl₂ or 5 mM MgCl₂ was added to the buffer. The AFM (NanoScope IIIe, di-Veco) was equipped with a fluid cell and oxide-sharpened Si₃N₄ cantilevers (Omicron TR400PSA; Olympus) having nominal spring constants of 0.09 N m⁻¹. High-resolution topographs were recorded at a minimal contact force of 50–100 pN, which was manually adjusted to compensate for thermal drift (Müller and Engel, 2007). Proportional and
integral gains were adjusted to minimize the error (deflection) signal and to maximize the topographic signal. When approaching a lateral resolution of \(\approx 2 \) nm, the scanning speed of the AFM tip was between 0.5 and 1.5 \(\mu \)m s\(^{-1}\). Only topographs showing identical structural features in both trace and retrace scanning directions were selected for further analysis. Topographs displaying any kind of AFM tip artifacts were not analyzed.

Single-Molecule Force Spectroscopy

After AFM-based localization of hVDAC1 in membranes, the AFM cantilever tip was pushed onto the hVDAC1 membrane applying forces \(\approx 500–750 \) pN for \(\approx 500 \) ms. Then, the AFM tip was retracted at a defined velocity (given in the figures) while recording an FD curve (Muller and Engel, 2007). FD spectra were recorded from densely packed hVDAC1 (Figure 1). For single-molecule force spectroscopy, we used 60-\(\mu \)m-long cantilevers (Biolevers; Olympus); spring constants \((=0.03 \) N m\(^{-1}\)) were calibrated from thermal noise analysis (Butt and Jaschke, 1995) before and after each experiment. To minimize errors that may occur due to uncertainties in the cantilever spring constant calibration, hVDAC1 was unfolded using at least five different cantilevers for each pulling velocity. DFS was conducted at constant pulling velocities of 100, 300, 600, 1,200, 2,400, and 5,000 nm s\(^{-1}\).

Single-Molecule Force Spectroscopy Data Selection and Analysis

In our single-molecule force spectroscopy experiments, we pushed the AFM tip onto hVDAC1 to facilitate the unspecific adhesion of the polypeptide of the protein (Muller and Engel, 2007). Thus, in principle every region of the polypeptide of hVDAC1 exposed to the AFM tip could adhere to the tip. For simplicity, we wanted to analyze only experiments that recorded the unfolding of hVDAC1 into the fully unfolded and stretched state. To reach this fully extended and unfolded state, the AFM tip must have adhered to one of the terminal ends of hVDAC1. The fully stretched hVDAC1 protein (294 residues including a His\(_6\)-tag) is \(\approx 106 \) nm long (assuming an average length of 0.36 nm per aa). For analysis, we thus automatically selected only FD curves that were \(>75 \) nm long. By this criterion, 2,168 (0.26\%) out of a total of 820,649 recorded FD curves were selected for further analysis using the WLC model as described (Muller and Engel, 2007; Bippes and Muller, 2011).

Parameters characterizing the unfolding energy barrier of the structural segments that stabilize hVDAC1 were estimated from DFS plots as described (Janovjak et al., 2008). Briefly, the loading-rate (\(\eta \)) dependency of the most probable unfolding force (\(F^* \)) was analyzed from DFS plots using Equation 1 (Evans, 1998; Evans and Ritchie, 1997),

\[
F^* = \frac{k_B T \lambda}{k_\beta} \ln \frac{\eta}{k_\beta T k_\lambda}, \quad (\text{Equation 1})
\]

where \(k_B \) is the Boltzmann constant and \(T \) is the absolute temperature. \(x_i \) and \(k_\beta \) were estimated by fitting DFS data to Equation 1 by non-linear regression. The height of the free energy barrier was estimated using the Arrhenius equation,

\[
\Delta G^f = -k_B T \ln (\tau_0), \quad (\text{Equation 2})
\]

where the Arrhenius frequency factor \(\tau_0 \) describes the diffuse relaxation time of a structural segment. \(\tau_0 \) was set at \(10^{-5} \) s (Bieri et al., 1999; Grater and Grubmuller, 2007). The mechanical spring constant of a structural segment (\(k \)) was estimated using Equation 3 (Janovjak et al., 2008),

\[
k = 2 \Delta G^f/\tau_0^2, \quad (\text{Equation 3})
\]

NMR Spectroscopy

NMR spectra were recorded on samples containing 0.45–0.6 mM \(^{2}\)H\(_{2}\)(75%). \(^{15}\)N-labeled hVDAC1 in 25 mM Bis-Tris (pH 6.8), approximately 130 mM lauryldimethylamine-oxide, and 5%–10% (v/v) D\(_{2}\)O. All spectra were measured at 37°C on Bruker 800 or 900 MHz spectrometers equipped with cryogenic probes. Spectra were processed using NMRPipe (Delaglio et al., 1995) and analyzed with SPARKY (Goodenard and Kessler, 2006).

Interaction of hVDAC1 with MgCl\(_{2}\) and CaCl\(_{2}\) was investigated by titration of hVDAC1 with the respective salt from a stock solution, 2D \(^{1}H,^{15}N\)-TROSY spectra (Pervushin et al., 1997) were recorded to follow \(^{15}\)N and \(^{1}H\) chemical shift changes and variations in peak intensities. Severely overlapping reso-

\[
\Delta \delta_{\text{CH}_{2}} = \sqrt{(\Delta \delta_{\text{CSD}}/5)^2 + (\Delta \delta_{\text{H}})^2} \quad (\text{Equation 4})
\]

where \(\Delta \delta_{\text{CSD}} \) and \(\Delta \delta_{\text{H}} \) are the chemical shift differences for the \(^{15}\)N and \(^{1}H\) dimensions, respectively. Chemical shift and intensity changes were mapped onto the crystal structure of mVDAC1 (PDB: 3EMN) and visualized using PyMOL (DeLano, 2003). Errors in CSD were estimated by duplicate measurements of a sample with typical protein concentration and signal-to-noise ratio and are given as average values (0.014 ppm for \(^{15}\)N CSD, 0.0028 ppm for the average CSD).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and one table and can be found with this article online at http://dx.doi.org/10.1016/j.str.2016.02.012.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

This work was supported by the Max Planck Society, the Fonds der Chemischen Industrie (scholarship to S.V.), the NCCR Molecular Systems Engineering of the Swiss National Science Foundation (SNF; grant 205320_160199 to D.J.M.), and through an ERC consolidator grant to M.Z. (DYNAMOM, grant agreement no. 282008). We thank M. Damaghi for the initial single-molecule force experiments and M. Bayrhuber for the initial NMR experiments.

Received: January 8, 2016
Revised: February 12, 2016
Accepted: February 22, 2016
Published: March 24, 2016

REFERENCES

Supplemental Information

Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane

Lin Ge, Saskia Villinger, Stefania A. Mari, Karin Giller, Christian Griesinger, Stefan Becker, Daniel J. Müller, and Markus Zweckstetter
Figure S1, relates to Figure 3 and Table 1. Superimposition of FD curves recorded upon unfolding of hVDAC1 in the absence and in the presence of calcium or magnesium. Buffer conditions, pulling velocities, and number (n) of superimposed FD curves are indicated. Every superimposed FD curve has been recorded upon unfolding of a single hVDAC1 channel. The gray scale bar on the right allows the evaluation of events of high (black), lower (gray), and no (white) occurrence. Single-molecule force spectroscopy was recorded in buffer solution (25 mM BisTris, pH 6.8) and as indicated in the absence or in the presence of 5 mM Ca\(^{2+}\) or 5 mM Mg\(^{2+}\).
Figure S2, relates to Table 1. Dynamic single-molecule force spectroscopy (DFS) plots reveal loading rate dependent interactions stabilizing the structural segments of hVDAC1. For each stable structural segment of hVDAC1 the most probable unfolding force was determined from the raw data (Figure S1) and plotted against the loading rate (Experimental Procedures). The fits of the experimental data (solid lines) using Eq. 1–3 are shown for hVDAC1 unfolded in the absence of divalent ions (red), 5 mM Ca²⁺ (blue), or 5 mM Mg²⁺ (green). Values for x_u and k_0 obtained from fitting the DFS plots are given in Table 1. Error bars represent the standard error of most probable force and loading rate.
Figure S3, relates to Table 1 and Figure 5. Schematic of an energy barrier stabilizing a structural segment of hVDAC1 against unfolding. The folded state of a structural segment (e.g., for example a β-hairpin in case of hVDAC1) is separated from the unfolded state by a free energy barrier. In the absence of an externally applied force (i.e., at equilibrium) the folded structure can unfold at a certain transition rate (k_u). To unfold the structure must overcome the transition state (\dagger). x_u characterizes the distance from the folded state to the transition state. The height of the unfolding free energy barrier separating the folded state from the unfolded state is given by ΔG^\dagger. This barrier, which is given by the free energy difference of the folded state and the transition state, therefore characterizes the activation free energy of unfolding. According to the Bell-Evans model (Bell, 1978; Evans, 1998; Evans and Ritchie, 1997), an externally applied force (F) tilts the energy landscape by the mechanical energy ($-F(\cos \theta)x$) and lowers the free energy barrier (ΔG^\dagger) to ΔG_F. Lowering of the free energy barrier is described by the mechanically applied pulling direction x and the angle θ of the externally applied force (F).
Table S1, relates to Table 1. Significance tests of the parameters characterizing the energy barrier parameters x_u, k_u, and ΔG^\ddagger and the spring constant κ of the stable structural segments detected for hVDAC1 in different buffer solutions. Shown are P-values revealed from T-student tests of the parameters given in Table 1.

<table>
<thead>
<tr>
<th>Force peak position / Structural region</th>
<th>Ca$^{2+}$ vs control</th>
<th>Mg$^{2+}$ vs control</th>
<th>Ca$^{2+}$ vs control</th>
<th>Mg$^{2+}$ vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_u</td>
<td>k_u</td>
<td>ΔG^\ddagger</td>
<td>κ</td>
</tr>
<tr>
<td>15 aa / N-terminus & 81</td>
<td>8.63225 10^{-1}</td>
<td>8.62419 10^{-1}</td>
<td>8.51244 10^{-1}</td>
<td>9.22322 10^{-1}</td>
</tr>
<tr>
<td>40 aa / 82</td>
<td>3.05692 10^{-5}</td>
<td>2.19535 10^{-2}</td>
<td>2.68579 10^{-4}</td>
<td>5.3541 10^{-4}</td>
</tr>
<tr>
<td>57 aa / 83</td>
<td>4.34067 10^{-7}</td>
<td>1.09213 10^{-2}</td>
<td>2.74325 10^{-7}</td>
<td>3.09731 10^{-4}</td>
</tr>
<tr>
<td>67 aa / 84-85</td>
<td>6.22929 10^{-5}</td>
<td>2.69795 10^{-1}</td>
<td>1.4011 10^{-3}</td>
<td>1.53124 10^{-2}</td>
</tr>
<tr>
<td>93 aa / 86-87</td>
<td>2.1159 10^{-2}</td>
<td>5.46752 10^{-1}</td>
<td>3.0968 10^{-2}</td>
<td>2.16478 10^{-1}</td>
</tr>
<tr>
<td>119 aa / 88-89</td>
<td>1.47059 10^{-3}</td>
<td>7.08056 10^{-3}</td>
<td>1.06767 10^{-2}</td>
<td>4.99555 10^{-3}</td>
</tr>
<tr>
<td>145 aa / 810-811</td>
<td>1.04417 10^{-1}</td>
<td>5.36127 10^{-1}</td>
<td>4.01567 10^{-1}</td>
<td>2.76425 10^{-1}</td>
</tr>
<tr>
<td>170 aa / 812-813</td>
<td>1.51198 10^{-2}</td>
<td>8.58459 10^{-2}</td>
<td>3.10518 10^{-2}</td>
<td>7.42127 10^{-2}</td>
</tr>
<tr>
<td>198 aa / 814-815</td>
<td>1.76505 10^{-5}</td>
<td>3.52599 10^{-3}</td>
<td>5.28258 10^{-5}</td>
<td>4.62344 10^{-4}</td>
</tr>
<tr>
<td>233 aa / 816-817</td>
<td>4.59109 10^{-1}</td>
<td>4.57097 10^{-1}</td>
<td>5.99544 10^{-1}</td>
<td>4.92486 10^{-1}</td>
</tr>
<tr>
<td>253 aa / 818-819</td>
<td>3.77248 10^{-1}</td>
<td>3.42859 10^{-1}</td>
<td>2.71483 10^{-1}</td>
<td>5.24156 10^{-1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force peak at contour length (aa)</th>
<th>Ca$^{2+}$ vs control</th>
<th>Mg$^{2+}$ vs control</th>
<th>Ca$^{2+}$ vs control</th>
<th>Mg$^{2+}$ vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_u</td>
<td>k_u</td>
<td>ΔG^\ddagger</td>
<td>κ</td>
</tr>
<tr>
<td>15 aa / N-terminus & 81</td>
<td>4.62349 10^{-5}</td>
<td>2.65949 10^{-4}</td>
<td>6.71793 10^{-5}</td>
<td>6.15288 10^{-6}</td>
</tr>
<tr>
<td>40 aa / 82</td>
<td>3.58609 10^{-5}</td>
<td>2.35747 10^{-2}</td>
<td>2.32124 10^{-4}</td>
<td>7.1667 10^{-4}</td>
</tr>
<tr>
<td>57 aa / 83</td>
<td>9.84356 10^{-5}</td>
<td>1.94398 10^{-1}</td>
<td>1.35225 10^{-4}</td>
<td>2.83095 10^{-2}</td>
</tr>
<tr>
<td>67 aa / 84-85</td>
<td>4.82471 10^{-6}</td>
<td>1.60301 10^{-3}</td>
<td>1.69816 10^{-5}</td>
<td>8.70332 10^{-6}</td>
</tr>
<tr>
<td>93 aa / 86-87</td>
<td>1.67672 10^{-4}</td>
<td>1.81281 10^{-1}</td>
<td>3.16225 10^{-4}</td>
<td>7.60199 10^{-3}</td>
</tr>
<tr>
<td>119 aa / 88-89</td>
<td>8.89912 10^{-3}</td>
<td>3.84503 10^{-2}</td>
<td>4.15668 10^{-3}</td>
<td>6.70167 10^{-2}</td>
</tr>
<tr>
<td>145 aa / 810-811</td>
<td>4.37276 10^{-6}</td>
<td>4.88016 10^{-2}</td>
<td>1.79251 10^{-5}</td>
<td>2.63014 10^{-3}</td>
</tr>
<tr>
<td>170 aa / 812-813</td>
<td>4.1602 10^{-2}</td>
<td>1.25082 10^{-2}</td>
<td>1.7947 10^{-3}</td>
<td>3.21037 10^{-2}</td>
</tr>
<tr>
<td>198 aa / 814-815</td>
<td>2.3926 10^{-4}</td>
<td>2.90302 10^{-2}</td>
<td>1.33695 10^{-3}</td>
<td>4.25575 10^{-3}</td>
</tr>
<tr>
<td>233 aa / 816-817</td>
<td>3.60765 10^{-2}</td>
<td>1.4135 10^{-1}</td>
<td>4.34655 10^{-2}</td>
<td>1.36833 10^{-1}</td>
</tr>
<tr>
<td>253 aa / 818-819</td>
<td>4.43563 10^{-3}</td>
<td>4.46661 10^{-3}</td>
<td>9.94509 10^{-3}</td>
<td>1.51084 10^{-3}</td>
</tr>
</tbody>
</table>
Supplemental References

