Supplemental Information

A Non-Stem-Loop CRISPR RNA

Is Processed by Dual Binding Cas6

Yaming Shao, Hagen Richter, Shengfang Sun, Kundan Sharma, Henning Urlaub, Lennart Randau, and Hong Li
Supplementary Materials

A Non Stem-loop CRISPR RNA Is Processed by Dual Binding Cas6

Yaming Shao1, Hagen Richter3, Shengfang Sun1, Kundan Sharma5, Henning Urlaub5, Lennart Randau3,4, and Hong Li1,2*

1Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
2Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
3Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany
4LOEWE Center for Synthetic Microbiology (Synmikro), 35043 Marburg, Germany
5Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.

RUNNING TITLE: Structure of CRISPR RNA processing endoribonuclease

KEYWORDS: Protein-RNA interactions, endoribonucleases, CRISPR RNA, crystal structures

Figure S1
Figure S2

*Correspondence should be addressed to H.L. (hong.li@fsu.edu)
Figure S1, relate to Figure 3. Size exclusion chromatography profile of RNA-free MmCas6b. Ni-NTA purified MmCas6b was loaded on to a Superdex 200 column previously equilibrated with 500 mM NaCl, 20 mM Tris-Cl pH 7.5, 5% glycerol. The major elution peak is consistent with a MmCas6b monomer (26 kDa) and the minor elution peak is consistent with a MmCas6b dimer (52 kDa).
Figure S2, relate to Figure 2. Comparison of the structure of the d31mer, motif II-bound MmCas6b subunit (gray) with that of the 14mer-bound MmCas6b (cyan). The 14mer RNA is shown in red and the d31mer (only the 14mer portion is shown) is in raspberry.