Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Decoupling a Thin Well-Ordered TiO2(110) Layer from a TiO2(110) Substrate with a Ti+Ta Mixed Oxide Interlayer

MPG-Autoren
/persons/resource/persons59170

Song,  Xin
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21973

Primorac,  Elena
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21774

Kuhlenbeck,  Helmut
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Song, X., Primorac, E., Kuhlenbeck, H., & Freund, H.-J. (2016). Decoupling a Thin Well-Ordered TiO2(110) Layer from a TiO2(110) Substrate with a Ti+Ta Mixed Oxide Interlayer. The Journal of Physical Chemistry C, 120(15), 8185-8190. doi:10.1021/acs.jpcc.6b01318.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-50B1-6
Zusammenfassung
A well-ordered TiO2(110) thin film has been successfully prepared on a rutile TiO2(110) single crystal substrate with a Ti + Ta mixed oxide interlayer. LEED and STM experiments show that the surface structure of the TiO2 thin film is the same as that of a regular TiO2(110) single crystal sample, and methanol TPD studies indicate that the chemical activities of the surfaces are also essentially identical. The Ti + Ta oxide interlayer hinders Ti diffusion, and therefore the TiO2 film can quickly be reduced and oxidized due to the small layer volume without changing the state of the substrate notably. This permits to study fully oxidized defect-free electrically insulating TiO2(110) surfaces with methods employing charged particles without surface charging. Also, strongly reduced layers can be prepared without substrate reduction.