Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-resolution quantitative sodium imaging at 9.4 tesla

MPG-Autoren
/persons/resource/persons84405

Mirkes,  CC
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83973

Hoffmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mirkes, C., Hoffmann, J., Shajan, G., Pohmann, R., & Scheffler, K. (2015). High-resolution quantitative sodium imaging at 9.4 tesla. Magnetic Resonance in Medicine, 73(1), 342–351. doi:10.1002/mrm.25096.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-4795-4
Zusammenfassung
Purpose Investigation of the feasibility to perform high-resolution quantitative sodium imaging at 9.4 Tesla (T). Methods A proton patch antenna was combined with a sodium birdcage coil to provide a proton signal without compromising the efficiency of the X-nucleus coil. Sodium density weighted images with a nominal resolution of 1 × 1 × 5 mm3 were acquired within 30 min with an ultrashort echo time sequence. The methods used for signal calibration as well as for B0, B1, and off-resonance correction were verified on a phantom and five healthy volunteers. Results An actual voxel volume of roughly 40 μL could be achieved at 9.4T, while maintaining an acceptable signal-to-noise ratio (8 for brain tissue and 35 for cerebrospinal fluid). The measured mean sodium concentrations for gray and white matter were 36 ± 2 and 31 ± 1 mmol/L of wet tissue, which are comparable to values previously reported in the literature. Conclusion The reduction of partial volume effects is essential for accurate measurement of the sodium concentration in the human brain. Ultrahigh field imaging is a viable tool to achieve this goal due to its increased sensitivity.