English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

MPS-Authors
/persons/resource/persons83948

Grosse-Wentrup,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84066

Macke,  JH
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., et al. (2015). Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nature Biotechnology, 33(1), 51-57. doi:10.1038/nbt.3051.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-4785-8
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with substantial heterogeneity in its clinical presentation. This makes diagnosis and effective treatment difficult, so better tools for estimating disease progression are needed. Here, we report results from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. In this crowdsourcing competition, competitors developed algorithms for the prediction of disease progression of 1,822 ALS patients from standardized, anonymized phase 2/3 clinical trials. The two best algorithms outperformed a method designed by the challenge organizers as well as predictions by ALS clinicians. We estimate that using both winning algorithms in future trial designs could reduce the required number of patients by at least 20. The DREAM-Phil Bowen ALS Prediction Prize4Life challenge also identified several potential nonstandard predictors of disease progression including uric acid, creatinine and surprisingly, blood pressure, shedding light on ALS pathobiology. This analysis reveals the potential of a crowdsourcing competition that uses clinical trial data for accelerating ALS research and development.