Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Synaptic unreliability facilitates information transmission in balanced cortical populations

MPG-Autoren
/persons/resource/persons83896

Ecker,  AS
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gatys, L., Ecker, A., Tchumatchenko, T., & Bethge, M. (2015). Synaptic unreliability facilitates information transmission in balanced cortical populations.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-472E-0
Zusammenfassung
Synaptic unreliability is one of the major sources of biophysical noise in the brain. In the context of neural information processing, it is a central question how neural systems can afford this unreliability. Here we examined how synaptic noise affects signal transmission in cortical circuits, where excitation and inhibition are thought to be tightly balanced. Surprisingly, we found that in this balanced state synaptic response variability actually facilitates information transmission, rather than impairing it. In particular, the transmission of fast-varying signals benefits from synaptic noise, as it instantaneously increases the amount of information shared between presynaptic signal and postsynaptic current. This finding provides a parsimonious explanation why cortex can afford to operate with noisy synapses.