English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detecting tones in complex auditory scenes

MPS-Authors
/persons/resource/persons83933

Giani,  AS
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84016

Kleiner,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84112

Noppeney,  U
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Giani, A., Belardinelli, P., Ortiz, E., Kleiner, M., & Noppeney, U. (2015). Detecting tones in complex auditory scenes. NeuroImage, 122, 203-213. doi:10.1016/j.neuroimage.2015.07.001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-43AB-5
Abstract
In everyday life, our auditory system is bombarded with many signals in complex auditory scenes. Limited processing capacities allow only a fraction of these signals to enter perceptual awareness. This magnetoencephalography (MEG) study used informational masking to identify the neural mechanisms that enable auditory awareness. On each trial, participants indicated whether they detected a pair of sequentially presented tones (i.e., the target) that were embedded within a multi-tone background. We analysed MEG activity for ‘hits’ and ‘misses’, separately for the first and second tones within a target pair. Comparing physically identical stimuli that were detected or missed provided insights into the neural processes underlying auditory awareness. While the first tone within a target elicited a stronger early P50m on hit trials, only the second tone evoked a negativity at 150 ms, which may index segregation of the tone pair from the multi-tone background. Notably, a later sustained deflection peaking around 300 and 500 ms (P300m) was the only component that was significantly amplified for both tones, when they were detected pointing towards its key role in perceptual awareness. Additional Dynamic Causal Modelling analyses indicated that the negativity at 150 ms underlying auditory stream segregation is mediated predominantly via changes in intrinsic connectivity within auditory cortices. By contrast, the later P300m response as a signature of perceptual awareness relies on interactions between parietal and auditory cortices. In conclusion, our results suggest that successful detection and hence auditory awareness of a two-tone pair within complex auditory scenes rely on recurrent processing between auditory and higher-order parietal cortices.