Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET)

MPG-Autoren
/persons/resource/persons145413

Cazelles,  R.
Dariya Dontsova, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  M.
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2271601_supp1.docx
(Ergänzendes Material), 492KB

2271601_supp2.docx
(Ergänzendes Material), 832KB

Zitation

Cazelles, R., Lalaoui, N., Hartmann, T., Leimkühler, S., Wollenberger, U., Antonietti, M., et al. (2016). Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET). Biosensors and Bioelectronics, 85, 90-95. doi:10.1016/j.bios.2016.04.078.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-41B2-7
Zusammenfassung
Direct electron transfer (DET) to proteins is of considerable interest for the development of biosensors and bioelectrocatalysts. While protein structure is mainly used as a method of attaching the protein to the electrode surface, we employed bioinformatics analysis to predict the suitable orientation of the enzymes to promote DET. Structure similarity and secondary structure prediction were combined underlying localized amino-acids able to direct one of the enzyme's electron relays toward the electrode surface by creating a suitable bioelectrocatalytic nanostructure. The electro-polymerization of pyrene pyrrole onto a fluorine−doped tin oxide (FTO) electrode allowed the targeted orientation of the formate dehydrogenase enzyme from Rhodobacter capsulatus (RcFDH) by means of hydrophobic interactions. Its electron relays were directed to the \FTO\ surface, thus promoting DET. The reduction of nicotinamide adenine dinucleotide (NAD+) generating a maximum current density of 1 μA cm−2 with 10 mM NAD+ leads to a turnover number of 0.09 electron/s/molRcFDH. This work represents a practical approach to evaluate electrode surface modification strategies in order to create valuable bioelectrocatalysts.