Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evolution of magnetic fluctuations through the Fe-induced paramagnetic to ferromagnetic transition in Cr2B

MPG-Autoren
/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Arcon, D., Schoop, L. M., Cava, R. J., & Felser, C. (2016). Evolution of magnetic fluctuations through the Fe-induced paramagnetic to ferromagnetic transition in Cr2B. Physical Review B, 93(10): 104413, pp. 1-8. doi:10.1103/PhysRevB.93.104413.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-395F-F
Zusammenfassung
In itinerant ferromagnets, the quenched disorder is predicted to dramatically affect the ferromagnetic to paramagnetic quantum phase transition driven by external control parameters at zero temperature. Here we report a study on Fe-doped Cr2B, which, starting from the paramagnetic parent, orders ferromagnetically for Fe-doping concentrations x larger than x(c) = 2.5%. In parent Cr2B, B-11 nuclear magnetic resonance data reveal the presence of both ferromagnetic and antiferromagnetic fluctuations. The latter are suppressed with Fe doping, before the ferromagnetic ones finally prevail for x > x(c). Indications for non-Fermi-liquid behavior, usually associated with the proximity of a quantum critical point, were found for all samples, including undoped Cr2B. The sharpness of the ferromagneticlike transition changes on moving away from x(c), indicating significant changes in the nature of the magnetic transitions in the vicinity of the quantum critical point. Our data provide some constraints for understanding quantum phase transitions in itinerant ferromagnets in the limit of weak quenched disorder.