English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Controlled Synthesis of Pnicogen-Chalcogen Polycations in Ionic Liquids

MPS-Authors
/persons/resource/persons126823

Ruck,  Michael
Michael Ruck, Max Planck Fellow, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Groh, M. F., Isaeva, A., Mueller, U., Gebauer, P., Knies, M., & Ruck, M. (2016). Controlled Synthesis of Pnicogen-Chalcogen Polycations in Ionic Liquids. European Journal of Inorganic Chemistry, (6), 880-889. doi:10.1002/ejic.201501430.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-30F6-5
Abstract
Three new pnicogen-chalcogen polycations were synthesized under specific conditions in the Lewis-acidic ionic liquids (ILs) [EMIm]XnAlX(3) and [BMIm]XnAlX(3) (X = Cl, Br; [EMIm]: 1-ethyl-3-methylimidazolium, [BMIm]: 1-butyl-3-methylimidazolium) and crystallized as their tetrahalogenidoaluminate salts. Single-crystal X-ray diffraction revealed the new polycation [Bi6Te4Br2](4+) in triclinic [Bi6Te4Br2](AlBr4)(4) as the reaction product of bismuth, tellurium, and bismuth tribromide. Substitution of the elements with Bi2Te3 yielded the heterocubane [Bi4Te4](4+) in tetragonal [Bi4Te4](AlBr4)(4), which crystallizes isotypically to its known chlorine counterpart. The latter is also accessible from ILs. The interactions between cations and anions were evaluated by quantum-chemical calculations. Bi2S3, which is insoluble in most media, readily dissolves in the employed IL and forms the new augmented heterocubane [Bi3S4AlCl](3+), which crystallizes with the complex anion [S(AlCl3)(3)](2-) as triclinic [Bi3S4AlCl][S(AlCl3)(3)]AlCl4. Quantum-chemical calculations support the assignment of elements in this compound. The monoclinic crystal structure of [Sb13Se16](AlCl4)(6)(Al2Cl7) contains a new member of the small family of pnicogen-chalcogen spiro-heterocubanes.