Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A three-dimensional quantitative study on the hydrodynamic focusing of particles with the immersed boundary - Lattice Boltzmann method.

MPG-Autoren

Sun,  Dong-Ke
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192231

Wang,  Yong
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, D.-K., Wang, Y., Dong, A.-P., & Sun, B.-D. (2016). A three-dimensional quantitative study on the hydrodynamic focusing of particles with the immersed boundary - Lattice Boltzmann method. International Journal of Heat and Mass Transfer, 94, 306-315. doi:10.1016/j.ijheatmasstransfer.2015.11.012.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-2732-2
Zusammenfassung
Hydrodynamic focusing of particles is numerically studied by the immersed boundary – lattice Boltzmann method. Particle focusing entropy is proposed to quantitatively characterize processing performance and final results of hydrodynamic focusing. Simulations of hydrodynamic focusing in several straight microchannels are carried out to evaluate versatility of the focusing entropy. Time evolutions of focusing entropies and particle trajectories are analyzed contrastively. The results demonstrate that the focusing entropy is an effective scale to measure particles ordering degree and hydrodynamic focusing performance. Higher ordering degree determines lower focusing entropy, which indicates better focusing performance. Channel cross section, particle rigidness and channel Reynolds number are three major factors influencing focusing dynamics and final results. Rectangular microchannel is more advantageous than circular and square ones in hydrodynamic focusing. Particles of different rigidness in rectangular microchannel can be separated significantly with the flow mediation. Increasing channel Reynolds numbers can lead to higher efficiency and better focusing performance.