Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition.

MPG-Autoren
/persons/resource/persons173537

He,  X.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  E.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173445

Ahlers,  G.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

He, X., Bodenschatz, E., & Ahlers, G. (2016). Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition. Journal of Fluid Mechanics, 791: R3. doi:10.1017/jfm.2016.56.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-297A-3
Zusammenfassung
We present measurements of the orientation θ0 and temperature amplitude δ of the large-scale circulation in a cylindrical sample of turbulent Rayleigh–Bénard convection (RBC) with aspect ratio Γ≡D/L=1.00 (D and L are the diameter and height respectively) and for the Prandtl number Pr≃0.8. The results for θ0 revealed a preferred orientation with up-flow in the west, consistent with a broken azimuthal invariance due to the Earth’s Coriolis force (see Brown & Ahlers (Phys. Fluids, vol. 18, 2006, 125108)). They yielded the azimuthal diffusivity Dθ and a corresponding Reynolds number Reθ for Rayleigh numbers over the range 2×1012≲Ra≲1.5×1014. In the classical state (Ra≲2×1013) the results were consistent with the measurements by Brown & Ahlers (J. Fluid Mech., vol. 568, 2006, pp. 351–386) for Ra≲1011 and Pr=4.38, which gave Reθ∝Ra0.28, and with the Prandtl-number dependence Reθ∝Pr−1.2 as found previously also for the velocity-fluctuation Reynolds number ReV (He et al., New J. Phys., vol. 17, 2015, 063028). At larger Ra the data for Reθ(Ra) revealed a transition to a new state, known as the ‘ultimate’ state, which was first seen in the Nusselt number Nu(Ra) and in ReV(Ra) at Ra∗1≃2×1013 and Ra∗2≃8×1013. In the ultimate state we found Reθ∝Ra0.40±0.03. Recently, Skrbek & Urban (J. Fluid Mech., vol. 785, 2015, pp. 270–282) claimed that non-Oberbeck–Boussinesq effects on the Nusselt and Reynolds numbers of turbulent RBC may have been interpreted erroneously as a transition to a new state. We demonstrate that their reasoning is incorrect and that the transition observed in the Göttingen experiments and discussed in the present paper is indeed to a new state of RBC referred to as ‘ultimate’.