Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Synthesis of novel 2-d carbon materials: sp2 carbon nanoribbon packing to form well-defined nanosheets

MPG-Autoren
/persons/resource/persons121589

Liu,  Xiaofeng
Cristina Giordano, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;
School of Materials Science & Engineering, Zhejiang University;

/persons/resource/persons121280

Fechler,  Nina
Nina Fechler, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c5mh00274e.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, X., Fechler, N., Antonietti, M., Willinger, M. G., & Schlögl, R. (2016). Synthesis of novel 2-d carbon materials: sp2 carbon nanoribbon packing to form well-defined nanosheets. Materials Horizons, 3(3), 214-219. doi:10.1039/C5MH00274E.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-1EAC-A
Zusammenfassung
The conversion of simple glucose in a salt flux results in functional carbon materials which contain larger quantities of N and S as dopants. This “salt and sugar” approach gives access to a new type of mesostructure, where single carbon ribbons terminated with oxygen and sulfur or nitrogen functionalities are “knitted” towards very homogeneous, about 10 nm thick layers with very large specific surface areas of up to 3200 m2 g−1. Aberration corrected high resolution TEM together with EELS reveals the details of this structure.