English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An automatic precipitation phase distinction algorithm for optical disdrometer data over the global ocean

MPS-Authors
/persons/resource/persons138725

Burdanowitz,  Jörg
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37091

Bakan,  Stephan
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
A 2 - Climate Processes and Feedbacks, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

amt-9-1637-2016.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Burdanowitz, J., Klepp, C., & Bakan, S. (2016). An automatic precipitation phase distinction algorithm for optical disdrometer data over the global ocean. Atmospheric Measurement Techniques, 9, 1637-1652. doi:10.5194/amt-9-1637-2016.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-0E24-C
Abstract
The lack of high-quality in situ surface precipitation data over the global ocean so far limits the capability to validate satellite precipitation retrievals. The first systematic ship-based surface precipitation data set OceanRAIN (Ocean Rainfall And Ice-phase precipitation measurement Network) aims at providing a comprehensive statistical basis of in situ precipitation reference data from optical disdrometers at 1 min resolution deployed on various research vessels (RVs). Deriving the precipitation rate for rain and snow requires a priori knowledge of the precipitation phase (PP). Therefore, we present an automatic PP distinction algorithm using available data based on more than 4 years of atmospheric measurements onboard RV Polarstern that covers all climatic regions of the Atlantic Ocean. A time-consuming manual PP distinction within the OceanRAIN post-processing serves as reference, mainly based on 3-hourly present weather information from a human observer. For automation, we find that the combination of air temperature, relative humidity, and 99th percentile of the particle diameter predicts best the PP with respect to the manually determined PP. Excluding mixed phase, this variable combination reaches an accuracy of 91 % when compared to the manually determined PP for 149 635 min of precipitation from RV Polarstern. Including mixed phase (165 632 min), an accuracy of 81.2 % is reached for two independent PP distributions with a slight snow overprediction bias of 0.93. Using two independent PP distributions represents a new method that outperforms the conventional method of using only one PP distribution to statistically derive the PP. The new statistical automatic PP distinction method considerably speeds up the data post-processing within OceanRAIN while introducing an objective PP probability for each PP at 1 min resolution.