Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evidence for hydrodynamic electron flow in PdCoO2

MPG-Autoren
/persons/resource/persons191608

Moll,  Philip J. W.
Physics of Microstructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons132116

Kushwaha,  Pallavi
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons186145

Nandi,  Nabhanila
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126833

Schmidt,  Burkhard
Burkhard Schmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126742

Mackenzie,  Andrew P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B., & Mackenzie, A. P. (2016). Evidence for hydrodynamic electron flow in PdCoO2. Science Magazine, 351(6277), 1061-1064. doi:10.1126/science.aac8385.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-04E0-5
Zusammenfassung
Electrons inside a conductor are often described as flowing in response to an electric field. This flow rarely resembles anything like the familiar flow of water through a pipe, but three groups describe counterexamples (see the Perspective by Zaanen). Moll et al. found that the viscosity of the electron fluid in thin wires of PdCoO2 had a major effect on the flow, much like what happens in regular fluids. Bandurin et al. found evidence in graphene of electron whirlpools similar to those formed by viscous fluid flowing through a small opening. Finally, Crossno et al. observed a huge increase of thermal transport in graphene, a signature of so-called Dirac fluids.Science, this issue p. 1061, 1055, 1058; see also p. 1026Electron transport is conventionally determined by the momentum-relaxing scattering of electrons by the host solid and its excitations. Hydrodynamic fluid flow through channels, in contrast, is determined partly by the viscosity of the fluid, which is governed by momentum-conserving internal collisions. A long-standing question in the physics of solids has been whether the viscosity of the electron fluid plays an observable role in determining the resistance. We report experimental evidence that the resistance of restricted channels of the ultrapure two-dimensional metal palladium cobaltate (PdCoO2) has a large viscous contribution. Comparison with theory allows an estimate of the electronic viscosity in the range between 6 ̑exttimes} 10{–}3 kg m{–}1 s{–}1 and 3 {̑exttimes} 10{–}4 kg m{–}1 s{–}1, versus 1 {̑exttimes} 10{–}3 kg m{–}1 s{–1 for water at room temperature.