English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

MPS-Authors
/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jeong, J., Ferrante, Y., Faleev, S. V., Samant, M. G., Felser, C., & Parkin, S. S. P. (2016). Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy. Nature Communications, 7: 10276, pp. 1-8. doi:10.1038/ncomms10276.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-BC87-4
Abstract
Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.