Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Frequency pulling effects in the quasi-two-dimensional ferromagnet 54Mn - Mn(COOCH3)2⋅ 4H2O studied by nuclear orientation techniques

MPG-Autoren
/persons/resource/persons173520

Goehring,  Lucas
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pond, J., Briant, T., Goehring, L., Kotlicki, A., Turrell, B. G., & Itoi, C. (2001). Frequency pulling effects in the quasi-two-dimensional ferromagnet 54Mn - Mn(COOCH3)2⋅ 4H2O studied by nuclear orientation techniques. Physical Review B, 64(6): 064403. doi:10.1103/PhysRevB.64.064403.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-B534-B
Zusammenfassung
Continuous wave NMR thermally detected by nuclear orientation has been used to investigate the magnetic properties and spin dynamics of the quasi-two-dimensional ferromagnet 54Mn−Mn(COOCH3)2⋅4H2O. The system exhibits a frequency pulling effect due to the indirect Suhl-Nakamura interaction between nuclear spins and the electronic spin excitation spectrum is related to the coupling strength of the nuclear spins. The temperature dependence of the frequency pulling effect was measured for the two crystalline sublattices Mn1 and Mn2 in low magnetic field. The spectra show a structure not predicted theoretically. The current theory is valid only for I=1/2 with uniaxial crystalline anisotropy fields. The theory of frequency pulling has been extended here to the case of I>~1/2 and nonuniaxial crystalline anisotropy fields and the resonant frequencies and linewidths have been calculated as a function of temperature. The new theory and data agree well in terms of the magnitude and temperature dependence of the frequency pulling. Discrepancies are likely due to simplifying assumptions when calculating the electronic magnon spectrum. Classical and quantum numerical simulations confirm qualitatively the predictions of the model.