English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback

MPS-Authors
/persons/resource/persons62455

Lasslop,  Gitta
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37113

Brovkin,  Victor
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37304

Reick,  Christian H.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37096

Bathiany,  Sebastian
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37207

Kloster,  Silvia
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

grl54593.pdf
(Publisher version), 645KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S., & Kloster, S. (2016). Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophysical Research Letters, 43, 6324-6331. doi:10.1002/2016GL069365.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-EE65-7
Abstract
The presence of multiple stable states has far-reaching consequences for a system's susceptibility to disturbances, including the possibility of abrupt transitions between stable states. The occurrence of multiple stable states of vegetation is supported by ecological theory, models, and observations. Here we describe the occurrence of multiple stable states of tree cover in a global dynamic vegetation model and provide the first global picture on multiple stable states of tree cover due to a fire-vegetation feedback. The multiple stable states occur in the transition zones between grasslands and forests, mainly in Africa and Asia. By sensitivity simulations and simplifying the relevant model equations we show that the occurrence of multiple states is caused by the sensitivity of the fire disturbance rate to the presence of woody plant types.