English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens

MPS-Authors
/persons/resource/persons37429

Krempl,  Corinna
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons188918

Sporer,  Theresa
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4116

Reichelt,  Michael
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons37502

Ahn,  Seung-Joon
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3918

Heidel-Fischer,  Hanna M.
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4231

Vogel,  Heiko
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3916

Heckel,  David G.
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3947

Joußen,  Nicole
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Krempl, C., Sporer, T., Reichelt, M., Ahn, S.-J., Heidel-Fischer, H. M., Vogel, H., et al. (2016). Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 71, 49-57. doi:10.1016/j.ibmb.2016.02.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-A89D-8
Abstract
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.