Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stainless Steel Mesh-supported NiS nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction

MPG-Autoren
/persons/resource/persons188891

Chen,  Jun Song
Tim Fellinger, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons144984

Ren,  Jiawen
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121860

Shalom,  Menny
Menny Shalom, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121282

Fellinger,  Tim
Tim Fellinger, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2248083_supp.pdf
(Ergänzendes Material), 787KB

Zitation

Chen, J. S., Ren, J., Shalom, M., Fellinger, T., & Antonietti, M. (2016). Stainless Steel Mesh-supported NiS nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Applied Materials and Interfaces, 8(8), 5509-5516. doi:10.1021/acsami.5b10099.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-AA46-5
Zusammenfassung
Nickel (II) sulfide (NiS) nanosheets with a thickness of 10 nm and a size of 200 nm were facilely grown on stainless steel (SLS) meshes via a one-pot hydrothermal method. This unique construction renders an excellent electrical contact between the porous film of active NiS sheets and the highly conductive substrate, which exhibits a superior catalytic activity towards oxygen evolution reaction (OER). The NiS@SLS electrocatalyst exhibits an unusually low overpotential of 297 mV (i.e., 1.524 V vs. RHE) at a current density of 11 mA?cm-2, and an extra small Tafel slope of only 47 mV?dec-1 proves an even more competitive performance at high to very high current densities. This performance compares very favorably to other Ni-based catalysts and even to the precious state-of-the-art IrO2 or RuO2 catalyst.