English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Low-energy spin-wave excitations in amplitude-modulated magnetic structure of PrNi2Si2

MPS-Authors
/persons/resource/persons126822

Rotter,  M.
Martin Rotter, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Blanco, J. A., Fak, B., Jensen, J., Rotter, M., Hiess, A., Schmitt, D., et al. (2015). Low-energy spin-wave excitations in amplitude-modulated magnetic structure of PrNi2Si2. Journal of Physics: Conference Series, 663: 012010, pp. 1-4. doi:10.1088/1742-6596/663/1/012010.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7E16-7
Abstract
Inelastic neutron scattering (INS) experiments and random phase approximation calculations have been used to investigate the low energy spin wave excitations in PrNi2Si2. The modulated magnitude of the ordered magnetic moments of Pr3+ ions implies that the associate, longitudinally polarized magnetic excitations are more intense and dispersive than the usual transverse spin waves. Within the random phase approximation the results are in good overall agreement with the predictions made by the model determined previously from the paramagnetic excitations. The most unusual observation is the well defined amplitude mode detected close to the magnetic Bragg point existing simultaneously with the phason mode. At low energies, an extra mode is observed to hybridize with the magnetic phasons in the neighborhood of the magnetic Brillouin zone center. A magnetoelastic interaction between the magnetic excitations and the longitudinal phonons is able to explain part of the disturbances, but it is concluded that the extra mode must be of some other, unknown origin.