日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

講演

Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au

MPS-Authors
/persons/resource/persons125158

Grabowski,  Blazej
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125477

Wippermann,  Stefan Martin
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125152

Glensk,  Albert
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Grabowski, B., Wippermann, S. M., Glensk, A., Hickel, T., & Neugebauer, J. (2015). Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. Talk presented at DPG Spring Meeting 2015. Berlin, Germany. 2015-03-15 - 2015-03-20.


引用: https://hdl.handle.net/11858/00-001M-0000-0029-7C72-5
要旨
Application of the generalized gradient corrected functional within standard density-functional theory results in a dramatic failure for Au, leading to divergent thermodynamic properties well below the melting point. By combining the upsampled thermodynamic integration using Langevin dynamics technique with the random phase approximation, we show that inclusion of nonlocal many-body effects leads to a stabilization and to an excellent agreement with experiment. © Published by the American Physical Society.