English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterisation of CASPR2 deficiency disorder - a syndrome involving autism, epilepsy and language impairment

MPS-Authors
/persons/resource/persons73285

Rodenas-Cuadrado,  Pedro
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons37905

Vernes,  Sonja C.
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

art_10.1186_s12881-016-0272-8.pdf
(Publisher version), 456KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rodenas-Cuadrado, P., Pietrafusa, N., Francavilla, T., La Neve, A., Striano, P., & Vernes, S. C. (2016). Characterisation of CASPR2 deficiency disorder - a syndrome involving autism, epilepsy and language impairment. BMC Medical Genetics, 17: 8. doi:10.1186/s12881-016-0272-8.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-75BB-A
Abstract
Background Heterozygous mutations in CNTNAP2 have been identified in patients with a range of complex phenotypes including intellectual disability, autism and schizophrenia. However heterozygous CNTNAP2 mutations are also found in the normal population. Conversely, homozygous mutations are rare in patient populations and have not been found in any unaffected individuals. Case presentation We describe a consanguineous family carrying a deletion in CNTNAP2 predicted to abolish function of its protein product, CASPR2. Homozygous family members display epilepsy, facial dysmorphisms, severe intellectual disability and impaired language. We compared these patients with previously reported individuals carrying homozygous mutations in CNTNAP2 and identified a highly recognisable phenotype. Conclusions We propose that CASPR2 loss produces a syndrome involving early-onset refractory epilepsy, intellectual disability, language impairment and autistic features that can be recognized as CASPR2 deficiency disorder. Further screening for homozygous patients meeting these criteria, together with detailed phenotypic and molecular investigations will be crucial for understanding the contribution of CNTNAP2 to normal and disrupted development.