Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Time-Resolved X-ray Spectroscopy in the Water Window: Elucidating Transient Valence Charge Distributions in an Aqueous Fe(II) Complex

MPG-Autoren
/persons/resource/persons15260

Huse,  Nils
Ultrafast Molecular Dynamics, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, University of Hamburg, and Center for Free-Electron Laser Science, 22761 Hamburg, Germany;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kuiken, B. E. V., Cho, H., Hong, K., Khalil, M., Schoenlein, R. W., Kim, T. K., et al. (2016). Time-Resolved X-ray Spectroscopy in the Water Window: Elucidating Transient Valence Charge Distributions in an Aqueous Fe(II) Complex. The Journal of Physical Chemistry Letters, 7(3), 465-470. doi:10.1021/acs.jpclett.5b02509.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-6CC2-9
Zusammenfassung
Time-resolved nitrogen-1s spectroscopy in the X-ray water window is presented as a novel probe of metal–ligand interactions and transient states in nitrogen-containing organic compounds. New information on iron(II) polypyridyl complexes via nitrogen core-level transitions yields insight into the charge density of the photoinduced high-spin state by comparing experimental results with time-dependent density functional theory. In the transient high-spin state, the 3d electrons of the metal center are more delocalized over the nearest-neighbor nitrogen atoms despite increased bond lengths. Our findings point to a strong coupling of electronic states with charge-transfer character, facilitating the ultrafast intersystem crossing cascade in these systems. The study also highlights the importance of local charge density measures to complement chemical interaction concepts of charge donation and back-bonding with molecular orbital descriptions of states.