Formal Solutions of Completely Integrable Pfaffian Systems With Normal Crossings

Barkatou, Moulay A.
XLIM UMR 7252, DMI, University of Limoges; CNRS
123, Avenue Albert Thomas, 87060 Limoges, France
moulay.barkatou@unilim.fr

Jaroschek, Maximilian
Max Planck Institute for Informatics,
Saarbruecken, Germany
mjarosch@mpi-inf.mpg.de

Maddah, Suzy S.
XLIM UMR 7252, DMI, University of Limoges; CNRS
123, Avenue Albert Thomas, 87060 Limoges, France
suzy.maddah@etu.unilim.fr

Abstract

In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is implemented in the computer algebra system MAPLE.

Keywords: Linear systems of partial differential equations, Pfaffian systems, Formal solutions, Rank reduction, Hukuhara-Turritin’s normal form, Normal crossings.

1. Introduction

Pfaffian systems arise in many applications [18], including the studies of aerospace, celestial mechanics [14], and statistics [22]. So far, the most important systems for applications are those with so called normal crossings [30].

A univariate completely integrable Pfaffian system with normal crossings reduces to a singular linear system of ordinary differential equations (ODS, in short), which have been studied extensively (see [5, 33] and references therein). Moreover, unlike the general case of several variables considered herein, algorithms to related problems leading to the computation of formal solutions have been developed by various authors (see [6, 9, 10, 11] and references therein). The MAPLE package ISOLDE [12] and the Mathemagix package LINDALG [27] are dedicated to the symbolic resolution of such systems.

More recently, bivariate systems were treated by the first and third author of this paper in [1]. This paper refines the results of the bivariate case and generalizes them to treat the more general multivariate case.
To get an intuition of the kind of systems we consider, we informally study the following simple bivariate completely integrable Pfaffian system with normal crossings. A formal definition of these systems will be given in Section 2.

Example 1. [1, Example 2] Given the following bivariate system over the ring of formal power series in \((x_1, x_2)\) with complex coefficients:

\[
\begin{aligned}
 x_1^4 \frac{\partial}{\partial x_1} F &= A_1 F =
 \begin{pmatrix}
 x_1^2 + x_1^2 + x_2 & x_2^2 \\
 -1 & x_1^2 + x_1 - x_2
 \end{pmatrix} F, \\
 x_1^3 \frac{\partial}{\partial x_2} F &= A_2 F =
 \begin{pmatrix}
 x_2^2 - 2x_2 - 6 & x_2^3 \\
 -2x_2 & -3x_2^2 - 2x_2 - 6
 \end{pmatrix} F.
\end{aligned}
\]

We are interested in constructing the formal objects \(F\) that satisfy the system. The existence of a fundamental matrix of formal solutions in our particular case is of the form

\[
\Phi(x_1, x_2) x_1^{c_1} x_2^{c_2} e^{q_1(x_1^{1/4})} e^{q_2(x_2^{1/2})}, \tag{1}
\]

where \(\Phi(x_1, x_2)\) is a matrix with formal power series entries, \(C_1\) and \(C_2\) are matrices with entries in \(\mathbb{C}\), and \(q_1, q_2\) are polynomials in \(\mathbb{C}[x_1^{-1}], \mathbb{C}[x_2^{-1}]\) respectively. We now want to determine \(\Phi, C_1, C_2, q_1, q_2, s_1, s_2\). For this purpose, we use the algorithm presented in [1]. The main idea of the former is to compute one part of the solution by considering an associated ODS in only one variable and then use this information to compute the other parts of the solution by transforming and decoupling the system into smaller and simpler systems:

- First, we construct two associated systems whose equations are derived by setting either \(x_1 = 0\) or \(x_2 = 0\):

\[
\begin{aligned}
 x_1^4 \frac{\partial}{\partial x_1} F &= A_1(x_1, 0) F =
 \begin{pmatrix}
 x_1^2 + x_1^2 & 0 \\
 -1 & x_1^2 + x_1
 \end{pmatrix} F, \\
 x_1^3 \frac{\partial}{\partial x_2} F &= A_2(0, x_2) F =
 \begin{pmatrix}
 x_2^2 - 2x_2 - 6 & x_2^3 \\
 -2x_2 & -3x_2^2 - 2x_2 - 6
 \end{pmatrix} F.
\end{aligned}
\]

We show in Section 4 that the formal invariants \(q_1, q_2, s_1\) and \(s_2\) can be computed from these associated systems. Via ISOLDE or LINDALG we compute \(s_1 = s_2 = 1\) and \(q_1 = \frac{4}{x_1}, q_2 = \left(\frac{3}{x_2} + \frac{2}{x_2}\right), \) and (1) becomes

\[
\Phi(x_1, x_2) x_1^{c_1} x_2^{c_2} e^{q_1(x_1^{1/4})} e^{q_2(x_2^{1/2})}.
\]

- Next, we apply the so-called eigenvalue shifting \(F = e^{-q_1} e^{-q_2} G\) (for a new unknown vector \(G\)), to facilitate the next step. The shifting yields:

\[
\begin{aligned}
 x_1^4 \frac{\partial}{\partial x_1} G &= x_1^{-3} \begin{pmatrix}
 x_1^3 + x_2 & x_2^2 \\
 -1 & x_1^2 - x_2
 \end{pmatrix} G, \\
 x_1^3 \frac{\partial}{\partial x_2} G &= x_2^{-1} \begin{pmatrix}
 x_2^2 & x_2^3 \\
 -2 & -3x_2
 \end{pmatrix} G.
\end{aligned}
\]
After the eigenvalue-shifting we apply another transformation that reduces the orders of the singularities in x_1 and x_2 to their minimal integer values. By setting $G = T_1 H$ where

$$T_1 = \begin{pmatrix} x_2 x_1^3 & -x_2 \\ 0 & 1 \end{pmatrix},$$

we get:

$$\begin{cases} x_1 \frac{\partial}{\partial x_1} H = \begin{pmatrix} -2 & 0 \\ -x_2 & 1 \end{pmatrix} H \\ x_2 \frac{\partial}{\partial x_2} H = \begin{pmatrix} -2 & 0 \\ -2 x_1^3 & -1 \end{pmatrix} H \end{cases}$$

Finally, via some linear algebra (see [23, Chapter 3] for general cases) we compute the transformation

$$T_2 = \begin{pmatrix} 1 & 0 \\ x_2 & 2 x_1^3 \end{pmatrix} -1 \right),$$

and setting $H = T_2 U$ results in the system

$$\begin{cases} x_1 \frac{\partial}{\partial x_1} U = C_1 U = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} U, \\ x_2 \frac{\partial}{\partial x_2} U = C_2 U = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} U. \end{cases}$$

We can now read off C_1 and C_2. We collect the applied transformations and get a fundamental matrix of solutions:

$$T_1 T_2 x_1 x_2 e^{\frac{1}{2} x_1^2} e^{\frac{1}{2} x_2^2},$$

where $C_1 = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$ and $C_2 = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$.

Unlike this simple example, the steps of computation can be far more involved and demand multiple levels of recursion. In order to generalize this algorithm to more than two variables, the following nontrivial questions have to be addressed:

- Can the information on the formal invariants still be obtained from the associated ODS systems?
- Can a rank reduction algorithm be developed without relying on properties of principal ideal domains as in the univariate and bivariate case?

In this paper we give positive answers to these questions, provided that certain conditions are met. We also present the first comprehensive description of the state of the art algorithmic approach for solving completely integrable Pfaffian systems with normal crossings. In Section 2, we recall the basic definitions and the necessary theory for our algorithm. This includes the general form of the solutions, the notion of equivalence between systems, the classification of singularities, and a description of the necessary transformations whose generalization to the
multivariate case is straightforward. In Section 3, we give the general structure of our proposed algorithm which relies on two major components: The first is associating to our system a set of ODS’s from which its formal invariants can be efficiently derived. This is detailed in Section 4. The second component is the rank reduction which we give in Section 5. The main algorithm is then given in Section 6 before concluding in Section 7.

2. Preliminaries

2.1. Completely Integrable Pfaffian Systems with Normal Crossings

The systems considered in this paper are those whose associated differential form is a 1-form. Such forms go back to the 1815 work of Johann Friedrich Pfaff, and are consequently referred to as Pfaffian forms. More explicitly, let \(R := \mathbb{C}[[x_1, \ldots, x_n]] \) be the ring of formal power series in \(x_1, x_2, \ldots, x_n \) over the field of complex numbers \(\mathbb{C} \). A Pfaffian system with normal crossings is a system of linear partial differential equations of the form

\[
x_i^{p_i+1} \frac{\partial}{\partial x_i} F = A_i F, \quad 1 \leq i \leq n,
\]

where the \(A_i \) are \(d \times d \) matrices with entries in \(R \). The system (2) is completely determined by the \(A_i \) and \(p_i \). We conveniently denote it by \(A = (A_1, \ldots, A_n) \) and assume that the \(p_i \) are given implicitly. Each of the \(p_i \) is a positive integer and is called the Poincaré rank of the \(i \)th component and the \(n \)-tuple

\[
p := (p_1, \ldots, p_n)
\]

is called the Poincaré rank of the system \(A \). The notion of normal crossings refers to the fact that for each \(i \), the only singularity of the \(i \)th component is at \(x_i + c_i \) for some constant \(c_i \in \mathbb{C} \). Without loss of generality, the singularity is placed at the origin. Otherwise, translations in the independent variables can be performed. The singular locus of this system is the union of hyperplanes of coordinates \(x_1 x_2 \ldots x_n = 0 \). A Pfaffian system is called completely integrable, if the following commutation rule holds for all \(i, j \in \{1, \ldots, n\} \):

\[
A_i A_j - A_j A_i = x_i^{p_i+1} \frac{\partial}{\partial x_i} A_j - x_j^{p_j+1} \frac{\partial}{\partial x_j} A_i.
\]

Subsequently, whenever we refer to a Pfaffian system, we assume it is a completely integrable system with normal crossings. For the remainder of this paper we once and for all fix a Pfaffian system \(A \) for which all the \(A_i \) are non-zero.

Remark 2. We adopt the field of complex numbers \(\mathbb{C} \) as the base field for the simplicity of the presentation. However, any computable commutative field \(\mathbb{F} \) with \(\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{C} \) can be considered instead. In this case, the restrictions on the extensions of the base field discussed in [26, Chapter 1] based on [6] apply as well and are taken into consideration within our Maple implementation.

\[1\] J. F. Pfaff. Methodus generalis, aequationes differentiarum partialium, nec non aequationes differentiales vulgares, utrasque primi ordinis inter quotcumque variabiles, complete integrandi, 1815.
2.2. Notations and Algebraic Structures

Our notations follow a set of guidelines in order to help the reader remember the multitude of different objects involved in our work. Single letter identifiers are usually chosen to be the initial letter of the mathematical term attached to the referenced object, like \(d \) for dimension and \(R \) for a ring. For a vector \(v \), its \(i^{th} \) component is given by \(v_i \) and for a univariate power series \(u \) the \(i^{th} \) coefficient is denoted by \(u_i \). We do not distinguish between row and column vectors. Upper case letters are used for algebraic structures, matrices and the unknown in a Pfaffian system. A family of matrices is given with lower indices, e.g. \((M_{i,j})_{i,j \geq 0} \), and for a matrix \(M_{i,j} \), blocks are given with upper indices, e.g.

\[
M_{i,j} = \begin{pmatrix} M_{i,j}^{11} & M_{i,j}^{12} \\ M_{i,j}^{21} & M_{i,j}^{22} \end{pmatrix},
\]

where the size of the different blocks are clear from the context. By \(x \) we denote the collection of variables \(x_1, \ldots, x_n \) and we use \(\tilde{x}_i \) to refer to the variables \(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \).

One can expand the \(A_i \) in system \(A \) as a formal power series with respect to \(x_i \):

\[
x_i^{p+1} \frac{\partial}{\partial x_i} F = (A_{i,0} + A_{i,1} x_i + A_{i,2} x_i^2 + \ldots) F,
\]

where the \(A_{i,j} \) are elements of \(\mathbb{C}[[\tilde{x}_i]] \). We denote this ring by \(R_{\tilde{x}_i} \). The first coefficient \(A_{i,0} = A(x_i = 0) \) in such an expansion can be regarded as non-zero without any loss of generality, otherwise \(p_i \) can be readjusted. We call \(A_{i,0} \) the leading matrix coefficient of the \(i^{th} \) component.

Aside from the rings \(R \) and \(R_{\tilde{x}_i} \), we will frequently have to work in other algebraic structures. We denote by \(K := \text{Frac}(R) \) the fraction field of \(R \). The definition of \(K_{\tilde{x}_i} \) is as expected. Unlike in the univariate case, \(K \) is not equal to the ring of formal series with only finitely many terms with monomials containing strictly negative exponents. This ring is the localization of \(R \) at the set \(\{ p \in R \mid \exists a \in \mathbb{N}^n : x^a p^{-1} \in R \} \), and we will denote it by \(R_{L} \). To see that \(R_{\tilde{x}_i} \) and \(K \) are not equal, note that \((x_1 + x_2)^{-1} \) is not an element of \(R_{\tilde{x}_i} \). Expansion with respect to \(x_2 \) gives:

\[
\frac{1}{x_1 + x_2} = \frac{1}{-x_2/x_1} = \sum_{i \geq 0} (-1)^i x_1^{-i-1} x_2^i,
\]

which has infinitely many poles in \(x_1 \). For more details, one may refer to [3].

Finally, in the sequel it will be necessary to introduce ramifications of the form \(x_i = t^{a_i} \) for new variables \(t_i \) and positive integers \(a_i \). We will therefore write \(R_t \) for \(\mathbb{C}[[t_1, \ldots, t_n]] \) and allow analogous notations for all structures introduced so far. And as usual, we denote the identity and zero matrices by \(I \) and \(O \) respectively. The dimensions are mentioned if confusion is likely to arise.

2.3. Equivalent Systems

As we have seen in the introductory example, we will make use of transformations to bring a system into particular forms. Such a transformation acts on a Pfaffian system as follows: A linear transformation (also called gauge transformation) \(F = T G \), where \(T \in GL_d(K) \), applied to (2) results in the system

\[
x_i^{p+1} \frac{\partial}{\partial x_i} G = \tilde{A}_i G, \quad 1 \leq i \leq n,
\]

(4)

where

\[
\frac{\tilde{A}_i}{x_i^{p+1}} = T^{-1} \left(\frac{A_i}{x_i^{p+1} T} - \frac{\partial}{\partial x_i} T \right), \quad 1 \leq i \leq n.
\]

(5)
We say that system (4) is equivalent to system (2) and we write \(T(A) := \tilde{A} \). It can be easily verified that complete integrability is inherited by an equivalent system. Subsequently, to stay in the same class of systems under study, special care will be taken so that the transformations used in our considerations do not alter the normal crossings (see Section 2.5).

2.4. Fundamental Matrix of Formal Solutions

Before studying how to construct formal solutions to a given system, the question arises if and how many solutions exist. The language of stable modules over the ring of power series is used in [16, Theorem 1] and [20, Main Theorem] independently to establish the following theorem which gives an answer to this question.

Theorem 3. There exist strictly positive integers \(\alpha_i, 1 \leq i \leq n \), and an invertible matrix \(T \in \mathbb{R}^{d \times d} \) such that, upon setting \(x_i = t_i^{\alpha_i} \), the transformation \(T(t) \) yields the following equivalent system:

\[
\begin{align*}
\ell_i^{p_i+1} \frac{\partial}{\partial x_i} G &= \tilde{A}_i(t_i) G, \\
& 1 \leq i \leq n,
\end{align*}
\]

where

\[
\tilde{A}_i(t_i) = \text{Diag}(\tilde{A}_{11}^i(t_i), \tilde{A}_{22}^i(t_i), \ldots, \tilde{A}_{jj}^i(t_i)),
\]

and for all \(1 \leq \ell \leq j \) we have that the \(\tilde{A}_{jj}^i \) are square matrices of dimension \(d_j \) of the form

\[
\tilde{A}_{\ell\ell}^i(t_i) = w_{\ell\ell}^i(t_i) I_{d_j} + t_i^{\alpha_i} c_{\ell\ell}^i I_{d_j} + N_{\ell\ell}^i,
\]

where

- \(d_1 + d_2 + \cdots + d_j = d \);
- \(w_{\ell\ell}^i(t_i) = \sum_{\beta=0}^{\alpha_i} \tilde{A}_{\ell\ell}^i(t_i) \) is a polynomial in \(t_i \), with coefficients in \(\mathbb{C} \);
- \(c_{\ell\ell}^i \in \mathbb{C} \) and \(N_{\ell\ell}^i \) is a constant (with respect to all derivations \(\partial/\partial x_i \) \(d_j \)-square matrix having nilpotent upper triangular form;
- for any fixed \(\ell \in \{1, \ldots, j\} \), the matrices \(\{N_{\ell\ell}^i\}_{i=1,\ldots,n} \) are permutables;
- for all \(\ell \in \{1, \ldots, j-1\} \), there exists \(i \in \{1, \ldots, n\} \) such that

\[
\begin{align*}
w_{\ell\ell}^i(t_i) &\neq w_{\ell\ell}^{i+1}(t_i) \\
or \quad c_{\ell\ell}^i - c_{\ell\ell}^{i+1} &\neq \mathbb{Z}.
\end{align*}
\]

This theorem guarantees the existence of a transformation which takes system (2) to the so-called Hukuhara-Turritin’s normal form from which the construction of a fundamental matrix of formal solutions (6) is straightforward. In fact, we have:

Corollary 4. Given system (2), a fundamental system of formal solutions exists and is of the form

\[
\Phi(x_1^{1/s_1}, \ldots, x_n^{1/s_n}) \prod_{i=1}^n x_i^{c_i} \prod_{i=1}^n \exp(Q_i(x_i^{-1/s_i})), \quad (6)
\]

where \(\Phi \) is an invertible matrix with entries in \(\mathbb{R} \), and for each \(1 \leq i \leq n \):
• s_i is a positive integer;

• the diagonal matrix

\[Q_i(x_i^{-1/s_i}) = \text{Diag} \left(q_{i,1}(x_i^{-1/s_i}), q_{i,2}(x_i^{-1/s_i}), \ldots, q_{i,d}(x_i^{-1/s_i}) \right) \]

contains polynomials in x_i^{-1/s_i} over \mathbb{C} without constant terms. We refer to $Q_i(x_i^{-1/s_i})$ as the x_i-exponential part. Under the notations of Theorem 3, it is obtained by formally integrating\[\frac{\alpha}{\ell^\ell} \]

• C_i is a constant matrix which commutes with $Q_i(x_i^{-1/s_i})$.

System A is said to be regular singular whenever all the $Q_i(x_i^{-1/s_i})$ are zero matrices. Otherwise, system (2) is irregular singular and the entries of $Q_i(x_i^{-1/s_i})$, $1 \leq i \leq n$, determine the main asymptotic behavior of the actual solutions as $x_i \to 0$ in appropriately small sectorial regions [21, Proposition 5.2, pp 232, and Section 4].

Definition 5. We let $m_{i,j}$ denote the minimum order in x_i within the terms of $q_{i,j}(x_i^{-1/s_i})$ in $Q_i(x_i^{-1/s_i})$ for $1 \leq i \leq n$ and $1 \leq j \leq d$. Then, the x_i-formal exponential growth order (or x_i-exponential order, in short) of A_i is the rational number

\[\omega(A_i) = -\min_{1 \leq j \leq d} m_{i,j}. \]

The n-tuple of rational numbers $\omega(A) = (\omega(A_1), \ldots, \omega(A_n))$ then defines the exponential order of system A.

If two systems are equivalent then they have the same x_i-exponential parts, and consequently the same x_i exponential orders, for all $1 \leq i \leq n$, under any transformation $T \in GL_d(K)$.

Example 6 (Example 1 cont.). From our investigations in the example of Section 1, we see that for the fundamental system of formal solutions, we have non-zero exponential parts with $\omega(A_1) = 1$ and $\omega(A_2) = 2$ and so the system is irregular singular (although $s_1 = s_2 = 1$).

The above theoretical results on existence do not establish the formal reduction itself, that is the algorithmic procedure which computes explicitly the α_i’s and a transformation which takes the system to a normal form that allows the construction of such solutions. This will be our interest in the following sections.

The computation of the formal invariants is a difficult task in the univariate case [6]. However, we will prove in Section 4 that in the multivariate case, these invariants can be computed from associated univariate systems. And so, unlike the univariate case, the main difficulties of the algorithm lie in rank reduction since it requires a careful choice of the applied transformations. This motivates the introduction of the notion of compatible transformations.

2.5. Compatible Transformations

A major difficulty within the symbolic manipulation of system (2) arises from (5). It is evident that any transformation alters all the components simultaneously. In particular, the equivalent system does not necessarily inherit the normal crossings even for very simple examples.
Example 7. [13, Section 4] Consider the following completely integrable Pfaffian system with normal crossings of Poincaré rank (3, 1):

\[
\begin{align*}
\frac{\partial}{\partial x_1} F &= A_1(x_1, x_2) F = \begin{pmatrix} x_1 + x_2 & x_2^2 \\ -1 & -x_2 + x_1^3 \end{pmatrix} F \\
\frac{\partial}{\partial x_2} F &= A_2(x_1, x_2) F = \begin{pmatrix} x_2 & x_1^2 \\ -2 & -3x_2 \end{pmatrix} F
\end{align*}
\]

This system appears within the reduction of the system of Example 1 in the introduction. As we have seen, there exists a transformation which dropped p_1 to zero. This can also be attained by the transformation

\[
F = \begin{pmatrix} x_1^3 \\ -x_2^2 \\ 0 \\ x_2 \end{pmatrix} \tilde{G}
\]

which is computed by the univariate-case Moser-based rank reduction algorithm, upon regarding the first component as an ODS in x_1 and x_2 as a transcendental constant. This results in the equivalent system

\[
\begin{align*}
\frac{\partial}{\partial x_1} \tilde{G} &= \tilde{A}_1(x_1, x_2) \tilde{G} = \begin{pmatrix} -2x_2 & 0 \\ -1 & x_2 \end{pmatrix} \tilde{G} \\
\frac{\partial}{\partial x_2} \tilde{G} &= \tilde{A}_2(x_1, x_2) \tilde{G} = \begin{pmatrix} -x_2^2 & 0 \\ -2x_1 & -2x_2 \end{pmatrix} \tilde{G}.
\end{align*}
\]

We can see that such a transformation achieves the goal of reducing the Poincaré rank of the first component. However, it alters the normal crossings as it introduces the factor x_2 on the left hand side of the first component. Moreover, it elevates the Poincaré rank of the second subsystem.

In order to preserve the normal crossings, we restrict the class of transformations that we use in our algorithm:

Definition 8. Let $T \in \text{GL}_d(K)$. We say that the transformation $F = TG$ (respectively T) is compatible with system (2) if the normal crossings of the system is preserved and the Poincaré ranks of the individual components are not elevated.

Remark 9. Clearly, if T is a constant matrix or $T \in \text{GL}_d(R)$ then it is compatible with system (2).

3. Structure of the Main Algorithm

If one is only interested in the asymptotic behavior of the solutions of system A, then one can compute the formal invariants from associated univariate systems as we prove in Section 4. If the singularity is regular or one is interested in computing a full fundamental matrix of formal solutions, as given by (6), then besides computing these invariants, further involved steps are required, as illustrated by Example 1. The recursive algorithm we propose generalizes that of the univariate case given by the first author in [6]. At each level of recursion with input A, we consider the leading matrix coefficients $A_{i,0} = A_i(x_i = 0)$ (we use both notation interchangeably) and distinguish between three main cases:

1. There exists at least one index $i \in \{1, \ldots, n\}$ such that $A_{i,0}$ has at least two distinct eigenvalues.
2. All of the leading coefficient matrices have exactly one eigenvalue and there exists at least one index $i \in \{1, \ldots, n\}$ such that $A_{i,0}$ has a nonzero eigenvalue.

3. For all $i \in \{1, \ldots, n\}$, $A_{i,0}$ is nilpotent.

In order to identify the properties of the eigenvalues of $A_{i,0}$, it suffices to consider the constant matrix $A_i(x = 0)$ due to the following well-known proposition (see, e.g., [20, Proposition 1, pp 8] or [8, Proposition 2.2] for a proof within the context of eigenvalues):

Proposition 10. The eigenvalues of $A_{i,0}$, $1 \leq i \leq n$, belong to \mathbb{C}.

Then, based on the above classification, a linear or an exponential transformation will be computed as described in the following subsections.

3.1. Distinct Eigenvalues: Uncoupling the System Into Systems of Lower Dimensions

Whenever there exists an index $i \in \{1, \ldots, n\}$ such that $A_{i,0}$ has at least two distinct eigenvalues, the system can be uncoupled into subsystems of lower dimensions as shown in Theorem 11. For a constructive proof, one may refer to [21, Section 5.2, pp 233].

Theorem 11. Suppose that for some $i \in \{1, \ldots, n\}$, the leading matrix coefficient $A_{i,0}$ has at least two distinct eigenvalues. Then there exists a unique transformation $T \in GL_d(\mathbb{R})$ of the form

$$T(x) = \begin{pmatrix} T^{11} & T^{12} \\ T^{21} & T^{22} \end{pmatrix} = \begin{pmatrix} I' & T^{12}(x) \\ T^{21}(x) & I \end{pmatrix},$$

with I' and I being identity matrices of dimensions d' and $d - d'$ respectively, where $0 < d' < d$, such that the transformation $F = TG$ yields the equivalent system

$$x_i^{\beta + 1} \frac{\partial}{\partial x_i} \tilde{G} = \begin{pmatrix} \tilde{A}^{11}(x) & O \\ O & \tilde{A}^{22}(x) \end{pmatrix} \tilde{G}, \quad 1 \leq i \leq n.$$
and $\tilde{A}^{11}(x), \tilde{A}^{22}(x), i \in \{1, \ldots, n\}$ are of dimensions d' and $d - d'$ respectively.

The theorem can be restated by saying that if one of the components of the system has a leading matrix coefficient with at least two distinct eigenvalues, then its corresponding system can be uncoupled into two subsystems of lower dimensions. Moreover, all of the other components will be uncoupled simultaneously. We aim in the sequel to determine changes of the independent variables x_i (ramifications), and construct transformations, which will allow the reduction of any input system, whatever the nature its leading matrix coefficient is, to a system whose leading matrix coefficient has at least two distinct eigenvalues. The recursion stops whenever the main input system is fully uncoupled into a set of system(s) which are either regular ($p = (0, \ldots, 0)$) or scalar ($d = 1$). The former have been already investigated in [23, Chapter 3] and the resolution of the latter is straightforward.

We remark that by Proposition 10, it suffices that there exists $i \in \{1, \ldots, n\}$ such that the constant matrix $A_i(x_1 = 0, \ldots, x_i = 0, \ldots, x_n = 0)$ has at least two distinct eigenvalues.

3.2. Unique Eigenvalue: Shifting

For any $i \in \{1, \ldots, n\}$ such that $A_i,0$ has a unique nonzero eigenvalue $\gamma_i \in \mathbb{C}$, applying the so-called eigenvalue shifting $F = \exp \left(\int_{\gamma_i c_i^{-p_i - 1}}^{\infty} \frac{x_i}{\gamma_i z_i - p_i - 1} dz_i \right) G$ yields a system \tilde{A} whose i^{th} component has a nilpotent leading matrix coefficient:

$$\tilde{A}_{i}^{p_i + 1} \frac{\partial}{\partial x_i} G = \tilde{A}_i(x)G, \quad \text{where} \quad \tilde{A}_i(x) = A_i(x) - \gamma_i I_d.$$

The other components of the system are not modified by this transformation which is clearly compatible with system A.

Hence, due to the uncoupling and shifting, we can assume without loss of generality that for all $i \in \{1, \ldots, n\}$, the leading matrix coefficients $A_{i,0}$ are nilpotent.

3.3. Nilpotency: Rank Reduction and Exponential Order

In the univariate case, $n = 1$, the nilpotency of $A_{1,0}$ suggests at least one of the following two steps, as proposed by the first author in [6]: Rank reduction and computation of the exponential order $\omega(A_1)$. The former reduces p_1 to its minimal integer value. It is possible that p_1 drops to zero, i.e. we arrive at a regular system, or that the leading matrix coefficient of the resulting system has at least two distinct eigenvalues, in which case we can again uncouple the system. Otherwise, $\omega(A_1) = \ell/m$ is to be computed, where ℓ and m are coprime. Then, by setting $x_1 = t^m$ and applying rank reduction again, it is proven that we arrive at a system whose leading matrix coefficient has two distinct eigenvalues. Therefore, the system can be uncoupled (see Figure 3).

The bivariate case, $n = 2$, is studied by the first and third authors of this paper in [1]. For rank reduction, the properties of principal ideal domains were used. And to determine the formal exponential order $\omega(A)$, associated univariate systems were defined. In this paper, we show that on the one hand, this approach to determine the formal exponential order remains valid in the multivariate setting, as we will see in the next section. On the other hand, the generalization of the rank reduction algorithm to the multivariate case is nontrivial and is discussed in Section 5. The multivariate formal reduction algorithm is then summed up in Section 6.
4. Computing the Formal Invariants

In the univariate case, where the system is given by a single matrix A_1, $\omega(A_1)$ can be computed from the characteristic polynomial of A_1, i.e. $\det(M_d - A_1)$, based on the analysis of a Newton polygon associated with the system [6, Theorem 1]. In this section we show that one need not search for a generalization of this algorithm to the multivariate case as the formal invariants of A, i.e. the exponential parts and $\omega(A)$, can be obtained from an associated univariate system. And so, not only do we give a method to retrieve these invariants but we also reduce computations to computations with univariate rather than multivariate formal series.

Definition 12. Given a Pfaffian system A, we call the following the associated ODS of A:

$$x_i^{p_i+1} \frac{d}{dx_i} F_i = \mathcal{A}_i(x_i) F_i, \quad 1 \leq i \leq n,$$

where $\mathcal{A}_i(x_i) := A(x_1 = 0, \ldots, x_{i-1} = 0, x_i, x_{i+1} = 0, \ldots, x_n = 0)$.

Theorem 13. For every $i \in \{1, \ldots, n\}$, the x_i-exponential part of a Pfaffian system is equal to the exponential part of the ith component of its associated ODS.

To establish this result, we rely on a triangular form weaker than the Hukuhara-Turritin’s normal form given in Theorem 3. This weaker form suffices to give insight into the computation of (6).

The following theorem is an reformulation of a theorem which was first given in [15, Proposition 3, pp 654] for the bivariate case, and then generalized in [16, Theorem 2.3] to the general multivariate case.

Theorem 14. Consider the Pfaffian system A. There exists a positive integer α_1, and a transformation $T \in GL_d(K_t)$ (where $x_1 = t_1^{\alpha_1}$ and $x_i = t_i, \quad 2 \leq i \leq n$), such that the transformation $F = TG$ yields the equivalent system:

$$
\begin{align*}
\left\{ \begin{array}{l}
x_i^{p_i+1} \frac{d}{dx_1} G = \tilde{A}_1(t_1, x_2, \ldots, x_n) G, \\
x_i^{p_i+1} \frac{d}{dx_i} G = \tilde{A}_i(x_2, \ldots, x_n) G, \quad 2 \leq i \leq m,
\end{array} \right.
\end{align*}
\tag{7}
$$
where
\[
\tilde{A}_1(t_1, x_2, \ldots, x_n) = \text{Diag}(\tilde{A}_{1,1}^{(1)}, \tilde{A}_{1,2}^{(1)}, \ldots, \tilde{A}_{1,n}^{(1)}),
\]
\[
\tilde{A}_i(x_2, \ldots, x_n) = \text{Diag}(\tilde{A}_{i,1}^{(1)}, \tilde{A}_{i,2}^{(1)}, \ldots, \tilde{A}_{i,n}^{(1)}), \quad 2 \leq i \leq n,
\]
and for all \(1 \leq \ell \leq j\), the entries of \(\tilde{A}_i^{(\ell)}\), \(2 \leq i \leq n\), lie in \(\mathbb{R}_\ell\), and the \(\tilde{A}_1^{(\ell)}\) are of the form
\[
\tilde{A}_1^{(\ell)} = w_1^{(\ell)}(t_1)\bar{I} + l_1^{(\ell)}(\tilde{R}_1^{(\ell)}(x_2, \ldots, x_n) + c_1^{(\ell)}\bar{I}d),
\]
where
- \(d_1 + d_2 + \cdots + d_j = d\);
- \(w_1^{(\ell)}(t_1)\) and \(c_1^{(\ell)}\) are as in Theorem 3;
- If \(\ell, \ell' \in \{1, \ldots, j - 1\}\) and \(\ell \neq \ell'\), then \(w_1^{(\ell)}(t_1) \neq w_1^{(\ell')}(t_1)\) or \(c_1^{(\ell)} - c_1^{(\ell')} \notin \mathbb{Z}\);
- \(\tilde{R}_1^{(\ell)}(x_2, \ldots, x_n)\) is a nilpotent \(dt\)-square matrix whose entries lie in \(\mathbb{R}_\ell\).

Moreover, \(T \in \text{GL}_d(K)\) can be chosen as a product of transformations in \(\text{GL}_d(R_i)\) and transformations of the form \(\text{Diag}(\tilde{R}_1^{(1)}, \ldots, \tilde{R}_1^{(j)})\), where \(\beta_1, \ldots, \beta_j\) are nonnegative integers.

Proof of Theorem 13. Upon the change of independent variable \(x_1 = r_1^{(\ell)}\), the transformation \(F = TG\) yields system (7) for which the first component is given by
\[
l_1^{(p_1 + 1)} \frac{\partial}{\partial t_1} G = \tilde{A}_1(t_1, x_2, \ldots, x_n) G.
\]
with the notations and properties as in Theorem 14. It then follows from (5) that
\[
l_1^{(p_1 + 1)} \frac{\partial}{\partial t_1} T = \alpha A_1(x_1 = r_1^{(\ell)}) T - T \tilde{A}_1.
\](8)

Due to the particular choice of \(T\) in Theorem 14, we can set \(x_i = 0, 2 \leq i \leq n\) in (8). In particular, the relation between the leading terms

\[
\mathcal{A}_1(x_1 = r_1^{(\ell)}) := A_1(x_1 = r_1^{(\ell)}, x_2 = 0, \ldots, x_n = 0),
\]
\[
\mathcal{A}_i := \tilde{A}_i(x_2 = 0, \ldots, x_n = 0),
\]
\[
T := T(x_2 = 0, \ldots, x_n = 0),
\]
is given by
\[
l_1^{(p_1 + 1)} \frac{\partial}{\partial t_1} T = \alpha \mathcal{A}_1(x_1 = r_1^{(\ell)}) T - T \mathcal{A}_1.
\]
Hence, the systems given by \(\alpha \mathcal{A}_1(x_1 = r_1^{(\ell)})\) (respectively \(\mathcal{A}_i\) and \(\tilde{A}_i\) are equivalent. It follows that they have the same formal invariants. Clearly, the same result can be obtained for any of the other components via permutation with the first component.

For univariate systems, the **true Poincaré rank** \(p_{\text{true}}(A_1)\) is defined as the minimal positive integer which bounds the exponential order of the system and it is known that this bound is equal to the minimal value for \(p_1\) which can be obtained upon applying any linear transformation to \(A_1\). With the help of Theorem 13 we can establish the analogous result for multivariate systems. We first give the following definition:
Definition 15. Let A be a Pfaffian system and for any $i \in \{1, \ldots, n\}$, let $p_{\text{true}}(A_i)$ the minimal integer value which bounds the exponential order in x_i, i.e.
\[p_{\text{true}}(A_i) - 1 < \omega(A_i) \leq p_{\text{true}}(A_i). \]
Then $p_{\text{true}}(A) = (p_{\text{true}}(A_1), \ldots, p_{\text{true}}(A_n))$ is called the true Poincaré rank of A.

It is shown by Deligne and van den Essen separately in [17, 19], in the multivariate setting that a necessary and sufficient condition for system A to be regular singular is that each individual component A_i, considered as a system of ordinary differential equations in x_i with the remaining variables held as transcendental constants, is regular singular. As a consequence, system A is regular singular if and only if its true Poincaré rank is $(0, 0, \ldots, 0)$. To test this regularity, algorithms available for the univariate case of $n = 1$ (e.g. [11, 24]) can be applied separately to each of the individual components. The following corollary follows directly from Theorem 13, showing that the i^{th} component of the true Poincaré rank of system A is equal to the the true Poincaré rank of the i^{th} associated (univariate) ODS.

Corollary 16. For all $1 \leq i \leq n$ we have
\[p_{\text{true}}(A_i) = p_{\text{true}}(A). \]

Proof. For the proof, it suffices to remark that
\[p_{\text{true}}(A_i) - 1 < \omega(A_i) = \omega(A_i) \leq p_{\text{true}}(A_i). \]

From this Corollary it does not yet follow for the multivariate case, as in the univariate case, that it is possible to apply a compatible transformation to system A such that all the p_i simultaneously equal the $p_{\text{true}}(A)$. We investigate this possibility in the next section.

In summary, the formal exponential order, the true Poincaré rank, and most importantly the Q_i’s in (6), can be obtained efficiently by computations with univariate rather than multivariate series using existing algorithms and packages. As mentioned in the introduction, this exponential part is of central importance in applications since it determines the asymptotic behavior of the solution in the neighborhood of an irregular singularity. To compute a full fundamental matrix of formal solutions, we still have to determine suitable rank reduction transformations. Transformations which reduce the rank of the associated systems do not suffice, since they are not necessarily compatible. We therefore proceed to develop a multivariate rank reduction algorithm.

5. Rank Reduction

In this section, we are interested in the rank reduction of Pfaffian systems, i.e. more rigorously, the explicit computation of a transformation which, given system A, yields an equivalent system whose Poincaré rank is the true Poincaré rank. We show that, under certain conditions, the true Poincaré ranks of the subsystems of A can be attained simultaneously via a transformation compatible with A.

We first generalize Moser’s reduction criterion [29] to multivariate systems. We then establish an extension of the algorithm we gave in [1] for the bivariate case to the multivariate setting. The main problem in the treatment of multivariate systems is that the entries of the A_i do not necessarily lie in a principal ideal domain. This is a common problem within the study of systems of functional equations. The same obstacle arises in [13] and in the analogous theory of formal decomposition of commuting partial linear difference operators established in [31].

\[^2\text{Stronger bounds are given in [6, Remark 3]}\]
5.1. Generalized Moser’s Criterion

For univariate systems, Moser’s criterion characterizes systems for which Moser-based rank reduction is possible and provides indications on how to construct rank reducing transformations. To adapt this criterion to our setting, we follow [7, 29] and define the generalized Moser rank and the Moser invariant of a system A as the following n-tuples of rational numbers:

\[m(A) = (m(A_1), \ldots, m(A_n)), \quad \text{where} \quad m(A_i) = \max \left(0, p_i + \frac{\text{rank}(A_{i0})}{d} \right), \]
\[\mu(A) = (\mu(A_1), \ldots, \mu(A_n)), \quad \text{where} \quad \mu(A_i) = \min(\{m(T(A_i)) \mid T \in GL_d(K)\}). \]

We remark that \(\mu(A) \) is well-defined due to Corollary 16.

Definition 17. Consider the partial order \(\prec \) on \(\mathbb{Q}^n \) for which \(\ell \prec k \) holds if and only if \(\ell_j \leq k_j \) for all \(1 \leq j \leq n \) and there is at least one index for which the inequality is strict. The system A (or the matrix \(A(x) \) respectively) is called reducible if \(\mu(A) < m(A) \). Otherwise it is said to be irreducible.

In other words, system A is irreducible whenever each of its components is. In particular, it is easy to see from this definition that a system A is regular singular if and only if \(\mu(A_i) \leq 1 \) for all \(i \in \{1, \ldots, n\} \), i.e. the true Poincaré rank is a zero n-tuple, which coincides with Deligne’s and van den Essen’s criterion.

5.2. Main Theorem

With the help of compatible transformations and the criterion established in Section 5.1, we study the rank reduction of some component \(A_i \) of A which is given by (2). We will see that rank reduction can be carried out for each component independently without affecting the individual Poincaré ranks of the other components. We fix \(i \in \{1, \ldots, n\} \) and we recall that one can expand the components of A w.r.t. \(x_i \). In particular, we have,

\[x_i^{p_i+1} \frac{\partial}{\partial x_i} F = A_i(x)F = (A_{i0}(x_i) + A_{i1}(x_i)x_i + A_{i2}(x_i)x_i^2 + \ldots)F. \]

We set

\[r_i := \text{rank}(A_{i0}). \]

For all \(i \) we can assume without loss of generality that \(A_{i0} \) is not the zero matrix and thus the reducibility of system A coincides with the existence of an equivalent system such that for some \(i \) the rank of the leading matrix coefficient \(A_{i0} \) is less than \(r_i \). We establish the following theorem:

Theorem 18. A necessary and sufficient condition for a Pfaffian system \(A \) to be reducible is that there exists an \(i \in \{1, \ldots, n\} \) such that the polynomial

\[\theta_i(\lambda) := x_i^{r_i} \det(\lambda I + \frac{A_{i0}}{x_i} + A_{i1})|_{x=0} \]

(9)

vanishes identically in \(\lambda \). Moreover, under certain conditions identified within the process of construction, a rank reducing transformation \(T \) can be chosen to be in \(GL_d(\mathbb{R}_x) \) and to be compatible with system A. More explicitly, it is a product of transformations in \(GL_d(\mathbb{R}_x) \) and polynomial transformations of the form \(\text{Diag}(x_1^{\beta_1}, \ldots, x_n^{\beta_n}) \) where \(\beta_1, \ldots, \beta_n \) are non negative integers.
Remark 19. The conditions required are always satisfied in the bivariate case \(n = 2 \) and in the case the dimension \(d = 2 \). This will be explained in Subsection 5.4.

Remark 20. In Moser-based rank reduction algorithms, the algebraic rank of some leading coefficient matrix is decreased until the matrix eventually reduces to a zero matrix and so the Poincaré rank drops at least by one. This process can be repeated until the Moser rank equals the Moser invariant. Due to the compatibility of \(T \) in Theorem 18, rank reduction can be applied to any of the components of \(A \) without altering the Moser rank of the others. Hence, by Corollary 16, the true Poincaré rank of system \(A \) can be attained by a successive application of the rank reduction to each of its components.

Intuitively, the characteristic polynomial of \(A_i/x_i \) is used in (9) to detect the true Poincaré rank of the \(i \)th component via the valuation of \(x_i \). It turns out that the valuation is only influenced by \(A_{i,0} \) and \(A_{i,1} \). Even though the true Poincaré rank can be determined from the associated ODS, the criterion is essential as it furnishes the construction of the transformation \(T \).

We give here the proof of the necessary condition of Theorem 18, which is based on a generalization of the proof given in [29] for the univariate case. It can be also viewed as a generalization of the proof in [26, Theorem 5.2] which is in the context of ODS perturbed singularly by a parameter. The proof of the sufficiency condition follows after a series of intermediate results that will also describe the intermediate steps in the algorithm. We will need two kinds of transformations, shearing transformations and column reductions, which will be explained in the next two subsections.

Proof. (Necessary condition, Theorem 18) Suppose that such a \(T(x) \) (whether compatible with system \(A \) or not) exists. Since \(\text{Frac}(\mathbb{C}[[\bar{x}_i]])[[x_i]] \) is a Principal ideal domain, then we can present \(T(x) \) in the form:

\[
T(x) = P(x) x^{\beta_i} Q(x),
\]

where \(\beta = \text{Diag}(\beta_1, \ldots, \beta_d) \) for some integers \(\beta_1 \leq \beta_2 \leq \cdots \leq \beta_d \), and \(P(x), Q(x) \) are unimodular elements of \(\text{Frac}(\mathbb{C}[[\bar{x}_i]])[[x_i]]^{d \times d} \). We denote the equivalent resulting system by \(B = T(A) \).

We then define the span \(s(T) \) by

\[
s := s(T) = \beta_d - \beta_1 = \max_{1 \leq k \leq d} (\beta_k - \beta_1).
\]

Without loss of generality, one can assume that \(s = 1 \). Otherwise, \(T \) can be written as a product of \(s + 1 \) transformations, the first of which is of span zero and the rest are of span one each, and which can be applied successively to the system. In fact, let \(e_{k,\ell} = 0 \) if \(k = \ell \) and \(e_{k,\ell} = 1 \) otherwise. Then one can construct \(s + 1 \) sequences

\[
\gamma^{(j)} = (\gamma_1^{(j)}, \ldots, \gamma_d^{(j)}), \quad j \in \{0, \ldots, s\},
\]
in the following manner

\[\gamma^{(0)} = (\beta_1, \beta_1, \ldots, \beta_1) \]
\[\gamma^{(1)} = (0, e_{\beta_2}, \beta_1, \ldots, e_{\beta_3}, \beta_1) \]
\[\gamma^{(2)} = (0, e_{\beta_2}, \beta_1, \ldots, e_{\beta_3}, \beta_1, \ldots) \]
\[\vdots \]
\[\gamma^{(j)} = (0, e_{\beta_2}, \beta_1, \ldots, e_{\beta_3}, \beta_1, \ldots) \]
\[\vdots \]
\[\gamma^{(s)} = (0, e_{\beta_2}, \beta_1, \ldots, e_{\beta_3}, \beta_1, \ldots) \]

One can then verify that for any \(j \in \{1, \ldots, s\} \) we have

\[\gamma_{1}^{(j)} \leq \cdots \leq \gamma_{n}^{(j)}, \]
\[\gamma_{n}^{(j)} = \gamma_{1}^{(j)}, \quad \text{and} \]
\[\sum_{j=0}^{s} \gamma_{m}^{(j)} = \beta_m, \quad m \in \{1, \ldots, d\} \]

We then proceed by defining

\[T^{(j)} = P x_{i}^{\gamma^{(j)}} P^{-1}, \quad \text{for } j \in \{0, 2, \ldots, s - 1\} \]
\[T^{(s)} = P x_{i}^{\gamma^{(0)}} Q. \]

We then have

\[T = T^{(0)} T^{(1)} T^{(2)} \ldots T^{(s)} \]

where \(s(T^{(0)}) = 0 \) and \(s(T^{(j)}) = 1, \quad j \in \{1, \ldots, s\} \).

We now consider \(A_i = P^{-1} A_i P - x_i P^{-1} \frac{\partial P}{\partial x_i} \) and \(\tilde{B}_i = QB_i Q^{-1} + x_i P^{-1} \frac{\partial P}{\partial x_i} Q^{-1} \). Then we have

\[\tilde{B}_i = x_i^{-\bar{\beta}} \tilde{A}_i x_i^{\bar{\beta}} - \beta x_i^{\bar{\beta}}. \]

It then follows from the unimodularity of \(P(x) \) and \(Q(x) \) with respect to \(x_i \) that \(m(A_i) = m(\tilde{A}_i) \) and \(m(B_i) = m(\tilde{B}_i) \). Let \(\vartheta(\lambda) = x_i^{\bar{\beta}} \det(\lambda I + \frac{A_i}{x_i})|_{x_i=0} \), then we have:

\[\vartheta(\lambda) = x_i^{\bar{\beta}} \det(\lambda I + \frac{A_i}{x_i})|_{x_i=0} = x_i^{\bar{\beta}} \det(\lambda I + \frac{\tilde{A}_i}{x_i} + x_i P^{-1} \frac{\partial P}{\partial x_i})|_{x_i=0} \]
\[= x_i^{\bar{\beta}} \det(\lambda I + \frac{\tilde{B}_i}{x_i} + \tilde{P}(x))|_{x_i=0} \]

where \(\tilde{P}(x) = x_i^{\bar{\beta}} \left(\frac{1}{x_i} \text{Diag}(\beta_1, \ldots, \beta_n) + x_i^{-\bar{\beta}} P^{-1} \frac{\partial P}{\partial x_i} x_i^{\bar{\beta}} \right) \). Hence, \(\tilde{P}(x) \) has no poles in \(x_i \) since \(\text{span}(T) = 1 \). In other words, the pole introduced in \(x_i^{-\bar{\beta}} P^{-1} \frac{\partial P}{\partial x_i} x_i^{\bar{\beta}} \) is at most a simple pole. And so, since \(p_i \leq 1 \), \(\tilde{P}(x) \) has no poles.

Thus the pole the determinant of \(\vartheta(\lambda) \) can have is of maximal order \(\bar{r} \leq \text{rank}(\tilde{B}_{i,0}(x_i)) = \text{rank}(B_{i,0}(x_i)) < r_i \), i.e.

\[\vartheta(\lambda) = x_i^{r_i-\bar{r}} E(x, \lambda)|_{x_i=0} \]

16
for some polynomial $E(x, \lambda)$ in λ. Consequently, $\vartheta(\lambda) \equiv 0$. But

$$\vartheta(\lambda) = x_i^r \det(\lambda I + \frac{A_i(x)}{x_i})|_{x_i=0} \equiv x_i^r \det(\lambda I + \frac{A_{i,0}(\bar{x}_i)}{x_i}) + A_{i,1}(\bar{x}_i) + \sum_{k=2}^{\infty} A_k(\bar{x}_i)x_i^{k-1})|_{x_i=0},$$

and so it suffices to consider $A_{i,0}$ and $A_{i,1}$, which yields $\theta_i(\lambda) \equiv 0$.

We now proceed to investigate the transformations needed to establish the sufficient condition.

5.3. Shearing Transformation

Consider the expansion $A_i = \sum_{k=0}^{\infty} A_{i,k} x_i^k$ of A_i with respect to x_i for a fixed $i \in \{1, \ldots, n\}$. Shearing transformations are polynomial transformations that, roughly speaking, are used to exchange blocks between the $A_{i,k}$'s. The ones we consider here are of the form

$$S = \text{Diag}(x_1^{\beta_1}, \ldots, x_d^{\beta_d}),$$

with $\beta_j \in \{0, 1\}$ for all $j \in \{1, \ldots, d\}$. We illustrate the shearing effect of such a transformation in an easy example.

Example 21. We apply a shearing transformation to the univariate system given by $A = A_1 = \sum_{k=0}^{\infty} A_{1,k} x_1^k$ with

$$A_{1,0} = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad A_{1,1} = \begin{pmatrix} 4 & 9 & 2 & -5 \\ 8 & 9 & 0 & 0 \\ 8 & 6 & 2 & 4 \\ 5 & 6 & 3 & 3 \end{pmatrix}.$$

Taking $S = \text{Diag}(x, x, 1, 1)$, the transformation will exchange the upper right and lower left 2×2 blocks of the A_i as exhibited in the following diagram:

```
\begin{align*}
\begin{array}{cccc}
\begin{array}{ccc}
\hline
x_0^0 & \hline
\end{array} \\
\begin{array}{ccc}
\hline
x_1^0 & \hline
\end{array} \\
\begin{array}{cc}
\hline
x_1^1 & \begin{array}{c}
\hline
x_1^2 \\
\hline
\end{array} \\
\hline
x_1^3 & \hline
\end{array} \\
\begin{array}{c}
\hline
x_1^4 \\
\hline
\end{array}
\end{array} \\
\begin{array}{c}
\hline
x_0^1 \\
\hline
\end{array} \\
\begin{array}{c}
\hline
x_1^1 \\
\hline
\end{array} \\
\begin{array}{cc}
\hline
x_1^2 & \begin{array}{c}
\hline
x_1^3 \\
\hline
\end{array} \\
\hline
x_1^4 & \hline
\end{array} \\
\begin{array}{c}
\hline
x_1^5 \\
\hline
\end{array}
\end{array} + \ldots
\end{align*}
```

Consequently, $A_{1,0}$ and $A_{1,1}$ become

$$\tilde{A}_{1,0} = \begin{pmatrix} 1 & 2 & 2 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \tilde{A}_{1,1} = \begin{pmatrix} 4 & 9 & * & * \\ 8 & 9 & * & * \\ -2 & 0 & 2 & 4 \\ 0 & 1 & 3 & 3 \end{pmatrix}.$$
Note that the lower left zero entries in \(\tilde{A}_{1,0} \) come from \(A_{1,-1} \), which is a zero matrix. In return, the upper right block of \(A_{1,0} \) is sent to \(A_{1,-1} \). Since it is a zero block, this transformation does not introduce denominators. The upper right entries in \(\tilde{A}_{1,1} \) come from \(A_{1,2} \). With this transformation, we reduced the rank of \(A_{1,0} \) from 2 to 1.

The shearing in Example 21 reduced the rank of the leading coefficient matrix and was compatible with the system (i.e. did not introduce undesired denominators of \(x_i \)) because of the column reduced form of \(A_{i,0} \), as we show later. The input system is not always given in such a form for \(A_{i,0} \), and so we investigate in the following subsection how to achieve it.

5.4. Column Reduction

To enable rank reduction, we alternate between the shearing transformation and transformations which reduce some columns of a leading coefficient matrix to zero. For this we discuss in this section the following problem.

Given a square matrix \(A = [v_1, \ldots, v_d] \in \text{Mat}_{d \times d}(R) \) (where \(v_i \) denotes the \(i \)th column) of rank \(r < d \) when considered as an element of \(\text{Mat}_{d \times d}(K) \), find a unimodular transformation \(T \in \text{GL}_d(R) \) such that only the first \(r \) columns of \(TAT^{-1} \) are non-zero.

Before considering the algorithmic aspects, we first discuss the existence of such a transformation.

As the next example shows, the desired transformation does not necessarily exist for any matrix \(A \). We will therefore require stronger assumptions on the module generated by the columns of \(A \).

Example 22. The matrix

\[
\begin{pmatrix}
0 & x_1 & x_2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

is obviously of rank 1. There is, however, no unimodular transformation \(T \in \text{GL}_3(R) \) such that \(TAT^{-1} \) contains only one non-zero column.

Consider the finitely generated \(R^d \)-submodule \(M := \langle v_1, \ldots, v_d \rangle \). We call it the column module of \(A \). In order to construct a suitable transformation in the bivariate case, the authors of [1] use the fact that \(\mathbb{C}[[x_1]] \) and \(\mathbb{C}[[x_2]] \) are principal ideal domains and hence that every finitely generated submodule of a free module over this ring is free. We generalize this for the multivariate case by showing in Corollary 24 that the freeness of the column module \(M \) is a necessary and sufficient condition for the existence of a transformation that meets our requirements. This is a direct consequence of Nakayama’s Lemma for local rings.

Theorem 23. Let \(R \) be a local ring, \(M \) its maximal ideal and let \(M \) be a finitely generated \(R \)-module. Then \(v_1, \ldots, v_r \in M \) form a minimal set of generators for \(M \) if and only if their images \(\overline{v}_1, \ldots, \overline{v}_r \) under the canonical homomorphism \(M \to M/\text{IM} \) form a basis of the vector space \(M/\text{IM} \) over the field \(R/M \).

Proof. See [28, Theorem 2.3, pp 8].
We adapt Theorem 23 to our situation to show that we can bring A into a column-reduced form if and only if its column module is free.

Corollary 24. Let $A \in \text{Mat}_{d \times d}(R)$ be of rank r and let M be the module generated by the columns of A. If M is free, then there exists a subset B of the columns in A with r elements such that B is a module basis of M. Furthermore, B is also a $K = \text{Frac}(R)$-vector space basis of the column space of A.

Proof. By Theorem 23 we can find a basis $B = \{b_1, \ldots, b_k\}$ of M among the columns of A. By definition, the b_i are linearly independent over R, so they are also linearly independent over K (otherwise, multiplying a linear relation in K with a common denominator yields a relation in R). Since B is a basis of the column module, it also contains a generating set of the K-vector space generated by the columns of A. \[\square\]

In theory, Corollary 24 would allow the computation of a unimodular column reduction transformation simply via Gaussian elimination. Assume we are given a matrix A and already know a subset $B = (b_1, \ldots, b_r)$ of the columns of A which forms a basis of the column module. Let v be a column vector of A which is not in B. Then, since B is a vector space basis, there exist $c_1, \ldots, c_r \in K$ such that
\[c_1 b_1 + \cdots + c_r b_r = v.\]

By assumption, B is also a module basis, so there also exist $d_1, \ldots, d_r \in R$ with
\[d_1 b_1 + \cdots + d_r b_r = v.\]

The b_i are linearly independent, and therefore the cofactors of v with respect to B are unique. It follows that $c_i = d_i$ for all $1 \leq i \leq r$. In particular, this means that we can obtain the d_i simply by Gaussian elimination.

The main algorithmic difficulty stems from the fact that not all formal power series admit a finite representation and even if the initial system is given in a finite form, the splitting transformation as in Theorem 11 does not preserve finiteness. In particular, we face two main problems when working with truncated power series:

1. Detecting the correct rank and the linear independent columns of A
2. If we know the independent columns, a column reduction transformation computed after truncation is not uniquely determined.

These computational problems arise for general multivariate and for bivariate systems, but were not addressed in previous works on the topic. Before we propose our resolution, we illustrate both problems in the following example:

Example 25. Consider the matrix
\[
\begin{pmatrix}
 x & 0 & x^2 & x^2 + x \\
 0 & x & x & x \\
 1 & 0 & 0 & 1
\end{pmatrix}
\]

Then the first three columns v_1, v_2, v_3 are linearly independent and generate the column module. A linear combination of the fourth column v_4 is given by
\[1 \cdot v_1 + 0 \cdot v_2 + 1 \cdot v_3 = v_4.\]
When truncating at order 1, the system is given as

\[
\begin{pmatrix}
 x & 0 & 0 & x \\
 0 & x & x & x \\
 1 & 0 & 0 & 1
\end{pmatrix}
\]

The original rank cannot be determined from the truncated matrix. Furthermore, even if we know that \(v_1, v_2, v_3\) are linearly independent, there are several linear combinations of the fourth column after truncation:

\[
1 \cdot v_1 + 0 \cdot v_2 + 1 \cdot v_3 = v_4.
\]

\[
1 \cdot v_1 + 1 \cdot v_2 + 0 \cdot v_3 = v_4.
\]

The cofactors of the second linear combination are not the truncated cofactors of the first. It can not be extended with higher order terms to a linear combination over the formal power series ring without truncation.

We can solve both problems with the help of minors of the original system. Let \(r\) be the rank of \(A\). Then there exists a nonzero \(r \times r\) submatrix \(B\) of \(A\) whose determinant is nonzero. Let \(k\) be the order of the determinant. If we take the truncated system \(\tilde{A} = A/x^{k+1}\), the same submatrix \(\tilde{B}\) in \(\tilde{A}\) will have a non-zero determinant modulo \(x^{k+1}\) and we can therefore identify in \(\tilde{A}\) which columns in \(A\) are linearly independent. This resolves problem 1.

Next assume that for instance the first \(r\) columns of \(A\) are linearly independent, i.e. we can choose \(B\) such that its columns correspond to \(v_1, \ldots, v_r\). Let \(k\) be as above, \(\ell\) be a positive integer and let \(v\) be a column vector that is linearly dependent on the columns of \(B\). Then there exist \(c_1, \ldots, c_r \in \mathbb{C}[x_1, \ldots, x_n]\) such that

\[
B \cdot (c_1, \ldots, c_r) = v.
\]

By Cramer’s rule, we know that the \(c_i\) are given by

\[
c_i = \frac{\det(B_i)}{\det(B)}, \tag{10}
\]

where \(B_i\) is the matrix obtained by replacing the \(i^{th}\) column of \(B\) by \(v\). Rewriting Equation (10) gives

\[
\det(B)c - \det(B_i) = 0, \tag{11}
\]

and this equation allows the computation of \(c_i\) by coefficient comparison. In particular, we are guaranteed to obtain the correct \(c_i\) up to order \(\ell\) if in (11) we replace \(B\) by \(\tilde{B}\), its truncation at order \(\ell + k + 1\), and \(B_i\) by \(\tilde{B}_i\), the truncation of \(B_i\) at order \(\ell + k + 1\). This resolves problem 2.

This approach is based on the fact that there is a truncation order \(k\) such that we can find a submatrix of maximal dimension with non-zero determinant. We have to remark, however, that by the nature of formal power series, it is in general not possible to tell a priori if a given truncation is high enough. Only after computing a wrong result can we determine that the truncation order has to be increased. This procedure necessarily terminates, since there exists a suitable truncation order. Furthermore, not every \(K\)-vector space basis of the column space of \(A\) is also a module basis, so, in the worst case, \(\binom{r}{d}\) submatrices have to be tested.

Subsequently, we will refer to the following conditions whenever necessary:
We say that (C) (resp. (R)) is satisfied if the column (resp. row) module of the matrix under consideration is free.

Remark 26. (C) (resp. (R)) is always satisfied in the case \(n = 2 \) since \(\mathbb{R}_d \) would be a principal ideal domain, and in the case \(d = 2 \) since the desired form is Arnold’s form [2].

5.5. **Proof of Theorem 18**

We consider again a multivariate system \(A \) as in (2). We fix \(i \in [1, \ldots, n] \) and investigate the rank reduction of the \(i^{th} \) component of \(A \) given by

\[
A_i^{p+1} \frac{\partial}{\partial x_i} F = A_i F = (A_{i,0} + A_{i,1} x_i + A_{i,2} x_i^2 + A_{i,3} x_i^3 + \ldots) F,
\]

where the matrices \(A_i \) have their entries in \(\mathbb{R}_d \) and the algebraic rank of \(A_{i,0} \) is denoted by \(r_i \).

We recall that we defined \(\bar{x}_i := (x_1, \ldots, x_{r-1}, x_r, \ldots, x_n) \) and \(\mathbb{R}_{\bar{x}_i} := \mathbb{C}[\bar{x}_i] \).

The proof of Theorem 18 for the reduction in \(x_i \) follows essentially the steps of that of the bivariate case which was given in [1]. The construction requires successive application of unimodular constant transformations and shearing transformations. We remark that when applying a transformation \(T \in GL_d(\mathbb{R}_d) \) on the \(i^{th} \) component, (5) reduces to

\[
\bar{A}_i = T^{-1} A_i T.
\]

Lemma 27. Under certain conditions, there exists a unimodular transformation \(U \in GL_d(\mathbb{R}_d) \) such that for \(\bar{A}_i = U(A_i) \) we have

\[
\bar{A}_{i,0} = \begin{pmatrix} \bar{A}_{11}^{i,0} & O & O \\ \bar{A}_{21}^{i,0} & O_{r-v} & O \\ \bar{A}_{31}^{i,0} & O_{d-r} & O \end{pmatrix}
\]

with diagonal blocks of sizes \(v \times v \), \((r-v) \times (r-v) \) and \((d-r) \times (d-r) \) respectively for some \(0 \leq v < r \) and where

\[
\begin{pmatrix} \bar{A}_{11}^{i,0} \\ \bar{A}_{21}^{i,0} \\ \bar{A}_{31}^{i,0} \end{pmatrix} \text{ and } \begin{pmatrix} \bar{A}_{11}^{i,0} & O \\ \bar{A}_{21}^{i,0} & O \\ \bar{A}_{31}^{i,0} & \bar{A}_{32}^{i,0} \end{pmatrix}
\]

are \(r \times v \) and \(d \times r \) matrices of full column ranks \(v \) and \(r \) respectively.

Proof. If \(A_{i,0} \) satisfies the condition (C) of Subsection 5.4, then one can compute a unimodular transformation \(U_1 \in GL_d(\mathbb{R}_d) \) such that

\[
U_1^{-1} A_{i,0} U_1 = \begin{pmatrix} B_{11}^{i,0} & O \\ \ast & B_{22}^{i,0} \end{pmatrix}
\]

has rank \(r \), entries in \(\mathbb{R}_d \) and with diagonal blocks of sizes \(r \times r \) and \((d-r) \times (d-r) \) respectively. Let \(v \) be the rank of \(B_{11}^{i,0} \). If \(B_{11}^{i,0} \) also satisfies the condition (C), then one can compute a unimodular transformation \(U_2 \in GL_d(\mathbb{R}_d) \) such that

\[
U_2^{-1} B_{11}^{i,0} U_2 = \begin{pmatrix} E_{11}^{i,0} & O \\ \ast & E_{22}^{i,0} \end{pmatrix}
\]
has properties analogous to $U_1^{-1}A_{i,0}U_1$. We set $U := \text{Diag}(U_2, I_{d-r}) \cdot U_1$. Then the leading coefficient $\tilde{A}_{i,0}$ of the equivalent system $U(A_i)$ has the form (13). Clearly, U is compatible with system A since it is unimodular.

Hence we can assume that the leading coefficient $A_{i,0}$ of (12) is in form (13). We then partition $A_{i,1}$ in accordance with $A_{i,0}$ and set

$$G_A(\lambda) := \begin{pmatrix} A_{i,0}^{11} & O & A_{i,1}^{13} \\ A_{i,0}^{21} & O & A_{i,1}^{23} \\ A_{i,0}^{31} & A_{i,0}^{32} & A_{i,1}^{33} + AI_{d-r} \end{pmatrix}. \tag{14}$$

We show in Lemma 28 that $\det(G_A(\lambda))$ can replace $\theta(\lambda)$ as a criterion of reducibility. However, $G_A(\lambda)$ has an additional important utility within the construction of a desired transformation. We exhibit its role in Proposition 29.

Lemma 28. The polynomial $\det(G_A(\lambda))$ vanishes identically in λ if and only if $\theta(A)$ (given in Theorem 18) does.

Proof. [11, Adaptation of proof of Proposition 2.1] Let $D(x_i) = \text{Diag}(x_iI_r, I_{d-r})$. Then we can write $x_i^{-1}A_i(x) = N(x)D^{-1}(x_i)$ where $N(x) \in \mathbb{R}^{d \times d}$, and set $D_0 = D(x_i = 0)$, $N_0 = N(x_i = 0)$. Then we have

$$\det(G_A(\lambda)) = \det(N_0 + \lambda D_0) = \det(N + \lambda D)|_{\lambda = 0}$$

$$= (\det(A_{x_i} + \lambda I_d) \det(D))|_{\lambda = 0}$$

$$= (\det(A_{x_i} + A_{i,1} + \lambda I_d) x_i')|_{\lambda = 0} = \theta(A).$$

Proposition 29. Suppose that $m(A_i) > 1$ and $\det(G_A(\lambda))$ is identical to zero. Then, under described conditions, there exists a unimodular matrix $Q(\tilde{x}_i)$ in $GL_d(\mathbb{R})$ with $\det(Q) = \pm 1$, compatible with system A, such that the matrix $G_A(\lambda)$ has the form

$$G_A(\lambda) = \begin{pmatrix} A_{i,0}^{11} & O & U_1 & U_2 \\ A_{i,0}^{21} & O & U_3 & U_4 \\ V_1 & V_2 & W_1 + AI_{d-r-q} & W_2 \\ M_1 & M_2 & M_3 & W_3 + AI_q \end{pmatrix}, \tag{15}$$

where $0 \leq q \leq d - r$, M_2 is a zero matrix, and

$$\text{rank} \begin{pmatrix} A_{i,0}^{11} & U_1 \\ A_{i,0}^{21} & U_3 \\ M_1 & M_3 \end{pmatrix} = \text{rank} \begin{pmatrix} A_{i,0}^{11} & U_1 \\ A_{i,0}^{21} & U_3 \end{pmatrix}, \tag{16}$$

$$\text{rank} \begin{pmatrix} A_{i,0}^{11} & U_1 \\ A_{i,0}^{21} & U_3 \end{pmatrix} < r_i. \tag{17}$$
Proof. The transformation \(Q(\bar{x}) \) can be constructed as in [1, Proposition 3] for the bivariate case, and under the condition \((R)\) of Section 5.4 and its weaker forms whenever necessary for intermediate matrices whose row vector space is inspected. Since \(Q(\bar{x}) \) is unimodular, it is compatible with system \(A \). It remains to remark however, that each row of \([M_1 \ M_2 \ M_3]\) is a linear combination of the rows of
\[
\begin{pmatrix}
A_{i,0}^{11} & O & U_1 \\
A_{i,0}^{21} & O & U_1
\end{pmatrix}.
\]
Hence, by construction, \(M_2 \) is a zero matrix. \(\square \)

Remark 30. In the particular case of \(v = 0 \), (13) is given by
\[
\bar{A}_{i,0}(\bar{x}) = \begin{pmatrix}
O_r \\
A_{i,0}^{12} \\
O_{d-r}
\end{pmatrix}, \quad \text{with} \quad \text{rank}(\bar{A}_{i,0}^{12}) = r.
\]
Consequently, it can be easily verified that (15) is given by
\[
G_A(\lambda) = \begin{pmatrix}
O_r \\
U_3 \\
W_2 + A_d \end{pmatrix}, \quad \text{and} \quad \varrho = 0.
\]

Proposition 31. If \(m(\lambda_i) > 1 \) and \(\det(G_A(\lambda)) \equiv 0 \) is as in (15) with conditions (16) and (17) satisfied, then the component \(A_i \) of \(A \) in (2) is reducible and reduction can be carried out with the shearing \(F = S(x_i) G \) where
\[
\begin{cases}
S(x_i) = \text{Diag}((x_i I_r, I_{d-r-q}, x_i I_q)) & \text{if } \varrho \neq 0 \\
S(x_i) = \text{Diag}((x_i I_r, I_{d-r})) & \text{otherwise}.
\end{cases}
\]
Furthermore, this shearing is compatible with system \(A \).

Proof. Given system (2). For any \(j \in \{1, \ldots, n\} \) we partition \(A_j(x) \) according to (15)
\[
A_j = \begin{pmatrix}
A_j^{11} & A_j^{12} & A_j^{13} & A_j^{14} \\
A_j^{21} & A_j^{22} & A_j^{23} & A_j^{24} \\
A_j^{31} & A_j^{32} & A_j^{33} & A_j^{34} \\
A_j^{41} & A_j^{42} & A_j^{43} & A_j^{44}
\end{pmatrix}, \quad 1 \leq j \leq n,
\]
where \(A_j^{11}, A_j^{12}, A_j^{33}, A_j^{44} \) are square matrices of dimensions \(v, r-v, d-r, q \) respectively.
It is easy to verify that the equivalent system \(S(A) \equiv \bar{A} \) given by (4) admits the form
\[
\bar{A}_i = \begin{pmatrix}
A_i^{11} & A_i^{12} & x_i^{-1}A_i^{13} & A_i^{14} \\
A_i^{21} & A_i^{22} & x_i^{-1}A_i^{23} & A_i^{24} \\
x_iA_i^{31} & x_iA_i^{32} & A_i^{33} & x_iA_i^{34} \\
A_i^{41} & A_i^{42} & x_i^{-1}A_i^{43} & A_i^{44}
\end{pmatrix} - x_i^0 \text{Diag}(I_r, O_{d-r-q}, I_q),
\]
\[
\bar{A}_j = \begin{pmatrix}
A_j^{11} & A_j^{12} & x_j^{-1}A_j^{13} & A_j^{14} \\
A_j^{21} & A_j^{22} & x_j^{-1}A_j^{23} & A_j^{24} \\
x_jA_j^{31} & x_jA_j^{32} & A_j^{33} & x_jA_j^{34} \\
A_j^{41} & A_j^{42} & x_j^{-1}A_j^{43} & A_j^{44}
\end{pmatrix}, \quad 1 \leq j \neq i \leq n.
\]
Hence, the leading matrix coefficient of the equivalent \tilde{p}^i-component is given by

$$\tilde{A}_{i,0}(\vec{x}_i) = \begin{pmatrix} A_{i,0}^{11} & O & U_1 & O \\ A_{i,0}^{21} & O & U_3 & O \\ O & O & O & O \\ M_1 & O & M_3 & O \end{pmatrix}$$

where $\text{rank}(\tilde{A}_{i,0}) < r_i$ since (16) and (17) are satisfied.

It remains to prove the compatibility of $S(x_i)$ with the system (2), in particular, that the normal crossings are preserved. It suffices to prove that the entries of A_i, $1 \leq j \neq i \leq n$, which will be multiplied by x_i^{-1} upon applying $S(x_i)$, namely, the entries of A_i^{13}, A_i^{23}, and A_i^{33} are zero matrices modulo x_i otherwise poles in x_i will be introduced. This can be restated as requiring $A_i^{13}(x_i = 0)$, $A_i^{23}(x_i = 0)$, and $A_i^{33}(x_i = 0)$ to be zero submatrices. This requirement is always satisfied due to the integrability condition and the resulting equality, obtained by setting $x_i = 0$, which we restate here

$$A_{i,0}^{p+1} \frac{\partial}{\partial x_j} A_{i,0} = A_j(x_i = 0) A_{i,0} - A_{i,0} A_j(x_i = 0), \quad 1 \leq j \neq i \leq n. \quad (18)$$

This equality induces a structure of $A_j(x_i = 0)$ which depends on that of $A_{i,0}$. Since $G_{A_i}(\lambda)$ is as in (15), then, before applying the shearing transformation, $A_{i,0}(\vec{x}_i)$ has the following form (19) and $A_j(x_i = 0)$ can be partitioned accordingly. And so we have for $1 \leq j \neq i \leq n$

$$A_{i,0}(\vec{x}_i) = \begin{pmatrix} A_{i,0}^{11} & O & O & O \\ A_{i,0}^{21} & O & (r-v)(r-v) & O \\ V_1 & V_2 & O_{(d-r-q)(d-r-q)} & O \\ M_1 & O & O & O \end{pmatrix}, \quad (19)$$

$$A_j(x_i = 0) = \begin{pmatrix} A_j^{11}(x_i = 0) & A_j^{12}(x_i = 0) & A_j^{13}(x_i = 0) & A_j^{14}(x_i = 0) \\ A_j^{21}(x_i = 0) & A_j^{22}(x_i = 0) & A_j^{23}(x_i = 0) & A_j^{24}(x_i = 0) \\ A_j^{31}(x_i = 0) & A_j^{32}(x_i = 0) & A_j^{33}(x_i = 0) & A_j^{34}(x_i = 0) \\ A_j^{41}(x_i = 0) & A_j^{42}(x_i = 0) & A_j^{43}(x_i = 0) & A_j^{44}(x_i = 0) \end{pmatrix}. \quad (20)$$

Inserting (19) and (20) in (18), one can obtain the desired results by equating the entries of (18). More explicitly, upon investigating the entries of the in (Column 3), (Rows 1 and 2, Column 2), and (Row 4, Column 2), we observe the following respectively:

- $\begin{pmatrix} (A_j^{11}(x_i = 0) \\ A_j^{21}(x_i = 0) \\ V_1 \ V_2 \\ M_1 \end{pmatrix} = O_{n,r-r-q}$. The former matrix is of full rank r_i by construction

thus $\begin{pmatrix} A_j^{11}(x_i = 0) \\ A_j^{21}(x_i = 0) \end{pmatrix}$ is a zero matrix.
\[\begin{pmatrix} A_{11}^i \\ A_{21}^i \\ A_{31}^i \end{pmatrix} \cdot A_{12}^{i,j}(x_i = 0) = O_{r,v}. \] The former is of full rank \(d \) by construction thus \(A_{12}^{i,j}(x_i = 0) \) is a zero matrix.

Finally, \(A_{13}^{i,j}(x_i = 0) \cdot V_2 - M_1 \cdot A_{12}^{i,j}(x_i = 0) = O_{(r-v)}. \) But \(A_{12}^{i,j}(x_i = 0) \) is null and \(V_2 \) is of full column rank \(r - d \) by construction and so \(A_{13}^{i,j}(x_i = 0) \) is a zero matrix as well.

This completes the proof. \(\square \)

We give hereby the proof of sufficiency of Theorem 18.

Proof. (Sufficient condition, Theorem 18) For the sufficiency, we set \(r_i = \text{rank}(A_{i,0}(x_i)) \). Under the condition described above, we can assume that \(A_{i,0}(x_i) \) has the form (13). Let \(G_A(\lambda) \) be given as in (14). Then, by Lemma 28, \(\det(G_A(\lambda)) \) vanishes identically in \(\lambda \) if and only if \(\theta_i(\lambda) \) does. Then the system \(S(Q(A)) \) where \(S, Q \) are as in Propositions 29 and 31 respectively, has the desired property. \(\square \)

5.6. Example

Examples of dimensions two and three do not give insight to the richness of the techniques presented. And so, we treat an example of dimension six. Due to the size of the system and the number of necessary computation steps, we are not able to include it directly in this paper. It is available in several formats at

http://www.mjaroschek.com/pfaffian/

6. Formal Reduction Algorithm

6.1. The Algorithm In Pseudo Code

We now give the full algorithm in pseudo-code and we refer to more detailed descriptions within the article whenever necessary.

Remark 32. Throughout the article, we adopted the field of complex numbers \(\mathbb{C} \) as the base field for the simplicity of the presentation. However, any computable commutative field \(K \) with \(\mathbb{Q} \subseteq K \subseteq \mathbb{C} \) can be considered instead. In this case, the restrictions on the extensions of the base field discussed in [26, Chapter 1] based on [16] apply as well and are taken into consideration within our Maple implementation.
Algorithm 1: rankReduce(p, A)

Input: $p_1, \ldots, p_n, A_1, \ldots, A_n$ of (2).

Output: $T(x) \in GL_d(R)$ and an irreducible equivalent system $[T(A)]$ whose Poincaré rank is its true Poincaré rank and the rank of its leading coefficient matrices is minimal ($\mu(T(A)) = m(T(A))$)

$T \leftarrow I_d$

FOR every i from 1 to n DO

$T_i \leftarrow I_d$; $p_i \leftarrow$ Poincaré rank of A_i

WHILE conditions (C) and (R) are satisfied DO

$U(\bar{x}_i) \leftarrow$ Lemma 27

$A_i \leftarrow U^{-1}A_i U$; $T_i \leftarrow T_i U$

WHILE $\det(G_{A_i}(\lambda)) = 0$ and $p_i > 0$ DO

$Q(\bar{x}_i), Q \leftarrow$ Proposition 29

$S(x_i) \leftarrow$ Proposition 31

$P \leftarrow QS; T_i \leftarrow T_i P$

$A_i \leftarrow P^{-1}A_i P - x_i^{p_i} S^{-1} \frac{\partial S}{\partial x_i}$

$p_i \leftarrow$ Poincaré rank of A_i

$U(\bar{x}_i) \leftarrow$ Lemma 27

$A_i \leftarrow U^{-1}A_i U$; $T_i \leftarrow T_i U$

END WHILE

END FOR

FOR every $j \neq i$ from 1 to n DO

$A_j \leftarrow T_j^{-1}A_j T_i - x_j^{p_i+1} T_i^{-1} \frac{\partial S}{\partial x_i} T_j$

END FOR

$T \leftarrow TT_i$

END FOR

RETURN (T, A_1, \ldots, A_n).

26
Algorithm 2: fmfs\(_{\text{paf}}\)(p, A)

Input: \(p_1, \ldots, p_n, A_1, \ldots, A_n\) of (2).

Output: A fundamental matrix of formal solutions (6).

\(Q, C \leftarrow O_d; \Phi \leftarrow I_d\)

WHILE \(d \neq 1\) or \(p_i > 0\) for some \(i \in \{1, \ldots, n\}\) DO

IF \(A_{i,0}\) has at least two distinct eigenvalues

Split system \([A]\) as in Subsection 3.1; Update \(\Phi\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}^{(1)}); \) Update \(\Phi, C, Q\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}^{(2)}); \) Update \(\Phi, C, Q\)

ELSE IF \(A_{i,0}\) has one non-zero eigenvalue

Update \(Q\) from the eigenvalues of \(A_0\)

\(A(x) \leftarrow \text{Follow Subsection 3.2 (}A_0\text{ is now nilpotent)}\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}(x)); \) Update \(\Phi, C, Q\)

ELSIF

Apply rank reduction of Section 5; Update \(\Phi\); Update \(p\); Update \(A_{i,0}\)

IF \(p_i > 0\) and \(A_{i,0}\) has at least two distinct eigenvalues

Split system as in Section 3.1; Update \(\Phi\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}^{(1)}(x)); \) Update \(\Phi, C, Q\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}^{(2)}(x)); \) Update \(\Phi, C, Q\)

ELSE IF \(A_{i,0}\) has one non-zero eigenvalue

Update \(Q\) from the eigenvalues of \(A_0\)

\(A(x) \leftarrow \text{Follow Subsection 3.2 (}A_0\text{ is now nilpotent)}\)

\(\text{fmfs\(_{\text{paf}}\)}(p, \hat{A}(x)); \) Update \(\Phi, C, Q\)

ELSE

Follow Section 4 to compute \(\omega(A) = \frac{\ell}{m}\)

\(x_i \leftarrow x^m\)

Apply rank reduction of Section 5; Update \(\Phi\); Update \(p (p_i \leftarrow \ell)\); Update \(A_{i,0}\)

Update \(Q\) from the eigenvalues of \(A_0\)

\(A(x) \leftarrow \text{Follow Subsection 3.2 (}A_0\text{ is now nilpotent)}\)

\(\text{fmfs\(_{\text{paf}}\)}(p, A(x)); \) Update \(\Phi, C, Q\)

END IF

END IF

END WHILE

RETURN \(A, \Phi, C, Q\).

Given system \(A\), we discuss the eigenvalues of the leading coefficient matrices \(A_{i,0}\), \(i \in \{1, \ldots, n\}\), of its \(n\) components. If for all of these components uncoupling is unattainable, then we fix \(i \in \{1, \ldots, n\}\) and proceed to compute the exponential order \(\omega(A_i)\) from the associated ODS. Suppose that \(\omega(A_i) = \frac{\ell}{m}\) with \(\ell, m\) coprime positive integers. One can then set \(t = x_i^{1/m}\) (re-adjustment of the independent variable), and perform again rank reduction to get an equivalent system whose \(i^{th}\) component has Poincaré rank equal to \(\ell\) and leading matrix coefficient with at least \(m\) distinct eigenvalues. Consequently, block-diagonalization can be re-applied to uncouple the \(i^{th}\)-component. By Subsection 3.1, this uncoupling results in an uncoupling for the whole system. As mentioned before, this procedure can be repeated until we attain either a scalar system, i.e. a system whose \(n\) components are scalar equations, or a system whose Poincaré rank is given by \((0, \ldots, 0)\). The former is trivial and effective algorithms are given for the latter in [23, Chapter 3]. We remark again that this algorithm is further refined in implementation to handle efficiently
algebraic extensions. However, we limit ourselves to this basic version of the algorithm for the sake of simplicity.

6.2. A Bound for the Truncation Order

In this section we investigate on how to derive an upper bound for the initial truncation order if the solution is to be determined up to some order \(\ell \). It is easy to see that for a univariate system, the number of shearing transformations is bounded by \(dp \), where \(d \) is the dimension and \(p \) the Poincaré rank of the system. This yields a bound for computing the \(x_i \)-exponential parts:

Lemma 33. The \(x_i \)-exponential parts of system \(A \) can be determined by a truncation of total order \(\max(d p_i \mid 1 \leq i \leq n) \) of each of the subsystems \(A_i, i \in \{1, \ldots, n\} \).

Proof. It suffices to remark that for any associated ODS, the exponential part is determined by, at most, the first \(d p_i \) coefficients [4, 25].

As was discussed in Section 5.4, for us to be able to compute the column reduction transformations, we have to know the order of the determinant of the matrices in question. Currently, a bound for this truncation order is not known. Given the maximal such order, a bound for the initial truncation can be obtained as follows:

Theorem 34. Let \(A \) be a Pfaffian system and let \(k \) be the maximal order of the determinants of all regular submatrices of maximal dimension of the leading matrix coefficients of all equivalent system that arise during the computation of fundamental system of formal solutions via Algorithm 2. Let \(\ell \) be a positive integer. Then the transformation \(T \) as in Theorem 3 can be computed up to order \(\ell \) if the initial system is given up to order \(\ell + d(k + 1) \sum_{i=1}^{n} p_i \).

Proof. The algorithm uses at most \(\sum_{i=1}^{n} dp_i \) rank reduction steps. Each rank reduction step uses not only the leading matrix coefficients \(A_{i,0} \), but also the \(A_{i,1} \) in the expansion \(A_i = A_{i,0} + A_{i,1}x + A_{i,2}x^2 + \ldots \) and the column reduction reduces the order up to which the correct coefficients of the transformation are obtained by \(k \). So any rank reduction reduces the truncation order by \(k + 1 \). This means that at most \(\ell + \sum_{i=1}^{n} dp_i(k + 1) \) coefficients of the initial system have to be known.

6.3. An Alternative Rank Reduction Algorithm

In the case of univariate systems, Levelt’s investigations of the existence of stationary sequences of free lattices lead to an algorithm which reduces the Poincaré rank to its minimal integer value [24]. This algorithm was then generalized to the bivariate case by the first author of this paper et al. in [13]. The theoretical basis of this algorithm differs substantially from the algorithm given herein based on Moser’s criterion. The final product of both approaches however, i.e. the algorithm itself, is based on applying column reductions and shearing transformations in both algorithms, though in a different manner (see Algorithm 7 for an adaptation in the multivariate case). In fact, the algorithms coincide for the particular case of \(\varphi = 0 \). The limitation in [13] within the generalization to the multivariate case is, in the language used in this article, in guaranteeing condition (C) for the leading coefficient matrix \(A_{i,0} \). Since the linear algebra problem is resolved in Section 5.4, then under condition (C), we can have the following generalization:
Algorithm 3: rankReduce\textsubscript{alt}(p, A)

<table>
<thead>
<tr>
<th>Input:</th>
<th>$p_1 \ldots p_n, A_1 \ldots A_n$ of (2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>$T(x) \in GL_d(\mathbb{R}_L)$ and an irreducible equivalent system ${T(A)}$ whose Poincaré rank is its true Poincaré rank and the rank of its leading coefficient matrices is minimal ($\mu(T(A)) = m(T(A))$)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
T & \leftarrow I_d \\
\text{FOR every } i \text{ from 1 to } n \text{ DO} \\
& T \leftarrow I_d; p_i \leftarrow \text{Poincaré rank of } A_i \\
& \text{WHILE } j < d - 1 \text{ and } p_i > 0 \text{ DO} \\
& \quad \text{IF condition (C) within Lemma 27 is satisfied THEN} \\
& \quad U(x_i) \leftarrow \text{Lemma 27} \\
& \quad r_i = \text{rank}(A_{i,0}) \\
& \quad S(x_i) \leftarrow \text{Proposition 31 with } q = 0 \text{ (i.e. } S(x_i) \leftarrow \text{Diag}(x_i, I_{d-r}) \text{)} \\
& \quad P \leftarrow US; \\
& \quad A_i \leftarrow P^{-1}A_jP - x_i^pS^{-1}\frac{\partial S}{\partial x_i} \\
& \quad \tilde{p}_i \leftarrow \text{Poincaré rank of } A_i \\
& \quad \text{IF } \tilde{p}_i < p_i \text{ THEN} \\
& \quad \quad j \leftarrow 0 \\
& \quad \text{ELSE} \\
& \quad \quad j \leftarrow j + 1 \\
& \quad \text{END IF} \\
& \quad \quad \tilde{p}_i \leftarrow \tilde{p}_i \\
& \quad \text{END IF} \\
& \quad T \leftarrow TP \\
& \text{END WHILE} \\
& \text{FOR every } j \neq i \text{ from 1 to } n \text{ DO} \\
& \quad A_j \leftarrow T^{-1}A_jT - x_j^{p_j+1}T^{-1}\frac{\partial T}{\partial x_j} \\
& \text{END FOR} \\
& T \leftarrow TT; \\
& \text{END FOR} \\
& \text{RETURN } (T, A_{i\mid i \neq i}). \\
\end{align*}
\]

Although both algorithms have an identical cost [23, pp 108], experimental results for the univariate case and certain bivariate systems (singularly-perturbed linear differential systems) suggest that the lattice-based algorithm complicates dramatically the coefficients of the system under reduction, even if Moser’s criterion is adjoined to avoid some unnecessary computations [26, Section 5.5.3]. Hence, Algorithm 6 can be used as long as the required conditions (C) and (R) hold. Nevertheless, if (R) is not satisfied, then Algorithm 7 can be used as long as condition (C) holds. There remains however, the question on the equivalence of these conditions.

7. Conclusion

In this article, we studied completely integrable Pfaffian systems with normal crossings in several variables. We showed that one can associate a set of univariate linear singular differential systems from which the formal invariants of the former can be retrieved. This reduces computations to computations over a univariate field via Isolde or Lindalg, and limits the numbers of
coefficients necessary for the computations. We then complemented our work with a rank reduction algorithm based on generalizing Moser’s criteria and the algorithm given by Barkatou in [7]. The former is applicable to any bivariate system. However, for multivariate systems, it demands the satisfaction of explicitly described conditions.

One field to investigate is the construction of a basis for the space of regular solutions using the notion of simple systems (see [9, 10] $m = 1$). Another is the possibility of weakening the conditions required in the multivariate setting for the rank reduction.

Systems arising from applications do not necessarily or directly fall into the class of completely integrable Pfaffian systems with normal crossings. Investigations in more general classes can be found in [30, 22, 32] and references therein. One may also consult [26, Conclusion of Part III] for examples.

An additional field of investigation is the formal reduction in the difference case using the approaches given proposed herein. Praagman established in [31] a formal decomposition of m commuting partial linear difference operators. This study was intended as an analog to that established by Levelt, van den Essen, Gérard, Charrière, Deligne, and others [15, 16, 17, 19].

