1 Parameterizing anion-cation interactions

The anion-cation interactions are optimized against the experimentally determined solution activity derivative at 2.5 m. This property directly depends on ion-ion interactions, thus making it an excellent target for parameterization. We opt for this indirect approach because directly parameterizing anion-cation interactions from quantum mechanical calculations is not feasible, as described below. The activity derivative can be easily calculated in simulations using the Kirkwood-Buff (KB) solution theory, as summarized below. Approaches based on the KB theory have been successfully used to optimize anion-cation interaction parameters involving non-polarizable models of simple monovalent and divalent ions or between water and neutral solutes, lending confidence to this choice.

1.1 Kirkwood-Buff theory

The Kirkwood-Buff theory of solutions is described in detail elsewhere so here only a brief summary is presented. KB theory relates integrals of the radial distribution functions in the grand canonical ensemble (theory relates integrals of the radial distribution functions in the grand canonical ensemble) to macroscopic thermodynamic properties. The KB integrals are defined as

\[
G_{ij} = 4\pi \int_0^\infty r^2 [g_{ij}^{\mu VT}(r) - 1] \, dr
\]

In this expression, \(g_{ij}^{\mu VT}(r)\) is the radial distribution function of species \(j\) around species \(i\) in the \(\mu VT\) ensemble. To obey the condition of electroneutrality, cations and anions cannot be treated separately when applying this theory to electrolyte solutions. Instead, anions and cations are assumed indistinguishable and the electrolyte solution is treated as a binary system composed of water (w) and co-solvent (c). The number density, \(\rho_c\), of the co-solvent is then \(\rho_c = n_c/V = (n_+ + n_-)/V\), where \(n_+\) is the number of cations, \(n_-\) is the number of anions, and \(V\) is the volume of the system. The molar activity derivative, \(a_{cc}\), of an electrolyte solution is defined as

\[
a_{cc} = \left. \frac{\partial \ln a_c}{\partial \ln \rho_c} \right|_{p,T}
\]

where \(a_c\) is the solution molar activity and is experimentally accessible. The molar activity derivative can be expressed in terms of the integrals

\[
G_{cc} = \frac{1}{4} (2G_{++} + G_{++} + G_{--})
\]

and

\[
G_{cw} = G_{w+} + G_{w-}
\]

as

\[
a_{cc} = \frac{1}{1 + \rho_c(G_{cc} - G_{cw})}
\]

In these expressions, the subscripts \((c, w, +, -)\) indicate the pairs of particles for which the KB integrals are calculated.

1.1.1 Calculating Kirkwood-Buff integrals from simulations of closed systems

Simulating open systems of dense fluids is challenging because particle insertion procedures are very inefficient in high density systems. We avoid this difficulty here by performing simulations in the canonical ensemble and calculating the Kirkwood-Buff integrals using a modified approach that is appropriate for this ensemble. Instead of using eq. 1, we start by calculating the integral

\[
G_{ij}(R) = \int_0^{2R} \left[f_i g_{ij}^{\mu VT}(r) - 1 \right] 4\pi r^2 (1 - 3x^2/2 + x^3/2) \, dr,
\]

which is the appropriate expression for finite-volume KB integrals. In this expression, \(x = r/(2R)\) and \(g_{ij}^{\mu VT}(r)\) is the ra-
dial distribution function in the NVT ensemble. The radial distribution function is identified in this section by the superscript NVT; in the remaining sections of this paper this superscript is dropped to simplify notation. \(f_{ij} \) is a concentration-dependent correction factor to the radial distribution function. This factor is necessary to correct the long range behavior of the radial distribution functions obtained from simulations in closed systems because these functions do not converge to unit at long distances, unlike those for open systems. The work of prior indicates that the ratio between \(g_{ij}^{NVT}(r) \) and \(g_{ij}^{NVT}(r) \) is of order \(1 + 1/N \) where \(N \) is the number of particles in the system, i.e., for reasonably large systems such as those used here, the correction factor is small. The difference \(G_{ij} - G_{ij} \), between the integral calculated using equation 6 and the true integral calculated using equation 1, scales as \(1/R \) for large values of \(R \), so we obtain accurate estimates of the true value of the KB integral, \(G_{ij} \), by linearly extrapolating \(G_{ij} \) to \(1/R \rightarrow 0 \). This approach has been successfully used to calculate Kirkwood-Buff integrals from simulations in the canonical ensemble.

1.2 Approach

In the original ion models, the Lennard-Jones interactions between anions and cations are obtained from Lorentz-Berthelot (LB) combination rules, and full, i.e., unscreened, electrostatic interactions are calculated between the Drude pairs associated with two ions. For MgSO_4, preliminary simulations (not shown) indicate that unscreened electrostatic interactions between the Drude pairs are inappropriate because they lead to unphysically short distances between Mg\(^{2+}\) and SO\(^{4-}\) ions in solution. For this reason, in the improved MgSO_4 model the short range electrostatic interactions between the Drude pairs associated with Mg\(^{2+}\) and with the oxygen atoms of SO\(^{4-}\) are screened. Introduction of the appropriate degree of screening is sufficient to reproduce the target activity derivative, so there is no need to alter the Lennard-Jones interactions between anions and cations in this case. The screened electrostatics between Mg\(^{2+}\) and SO\(^{4-}\) ions have a functional form originally introduced by Thole:

\[
U_{\text{electrohole}} = \frac{q_i q_j}{4 \pi \epsilon_0 r_{ij}} \left[1 - \left(1 + \frac{r_{ij}}{2a} \right) \exp\left(-r/a \right) \right] \tag{7}
\]

This functional form is selected because it is already used in the context of the SWM4-NDP water model, to screen the interactions between the Drude pairs of divalent cations and SWM4-NDP water, and is thus fully compatible with this model. In Equation 7, \(r_{ij} \) is the distance between the pair of charges of magnitude \(q_i \) and \(q_j \), \(a = \sqrt{\pi \epsilon_0 \alpha_{ii,j}} \) and \(\alpha_{ii,j} \) is the polarizability volume of the atoms associated with the \(i \) or \(j \) charges. The pairs of charges are those belonging to the Drude pairs of two ions whose interactions should be screened. For Mg\(^{2+}\) and SO\(^{4-}\) the Drude pairs are those associated with Mg\(^{2+}\) and with the sulfate oxygens (O\(_{out}\)):

\[
q_i = \{ q_{Mg^{2+}}' - q_D, q_{Mg^{2+}}, q_{\text{sulfate}} \} \quad q_j = \{ q_{O_{out}'}, -q_D, q_{O_{out}'} \}
\]

Here \(q^X \) without subscript denotes the total charge of the atom or ion \(X \); \(q_{D}^X \) denotes the charge of the negative Drude particle belonging to \(X \); \(q^X - q_{D}^X \) thus indicates the core charge that co-localizes with the Lennard-Jones center of each atom or ion. \(t_{ij} \) is the dimensionless Thole screening parameter for the two particles being considered. This parameter determines the extent of screening between the two charges: for \(t_{ij} \rightarrow 0 \) the interactions are fully screened, for \(t_{ij} \rightarrow \infty \) they are totally unscreened. The \(t_{Mg,O_{out}} \) parameter is optimized in this study to reproduce the activity derivative of aqueous solutions of MgSO_4 with concentration 2.5 m.

Preliminary simulations (not shown) for CsCl indicate that screening the short range electrostatic interactions between the Drude pairs of Cs\(^+\) and Cl\(^-\) increases the disagreement between the calculated solution activity derivative and the experimental value, so screening is not introduced for this salt. To reproduce the activity derivative of CsCl at 2.5 m, then, we instead optimize the energy parameter, \(\epsilon_{\text{Cs,Cl}} \), of the Lennard-Jones interactions between Cs\(^+\) and Cl\(^-\). These interactions are given by:

\[
U_{LJ}(r_{ij}) = \frac{1}{2} \left(\frac{\epsilon_{\text{Cs,Cl}}}{r_{ij}} \right)^{12} - \frac{1}{2} \left(\frac{\epsilon_{\text{Cs,Cl}}}{r_{ij}} \right)^6 \tag{7}
\]

where \(\epsilon_{ij} \) and \(R_{\text{min},ij} \) are parameters that characterize the interactions between atoms \(i \) and \(j \), and \(r_{ij} \) is the distance between these atoms. For all remaining Lennard-Jones interactions, the usual LB rule to calculate \(\epsilon \) (\(\epsilon_{ij} = \sqrt{\epsilon_{min}^{1/2}} \)) applies. For all pairs of atoms including Cs\(^+\) and Cl\(^-\), \(R_{\text{min},ij} \) is calculated from the self-interaction parameters as usual:

\[
R_{\text{min},ij} = \left(\frac{\mu_{ij}}{\alpha_{ij}} \right)^{1/2} + R_{\text{min},ii}/2 + R_{\text{min},jj}/2.
\]

1.3 Applying the Kirkwood-Buff theory to calculate activity derivatives for MgSO_4 and CsCl solutions

To parameterize the anion-cation interactions for MgSO_4 and CsCl we perform several production runs for each 2.5 m solution. All simulation details are given in the main text. Each run differs only in the value of the parameter to be optimized: \(t_{Mg,O_{out}} \) or \(\epsilon_{\text{Cs,Cl}} \). We test the values \(t_{Mg,O_{out}} = 1, 1.5, 1.78, 1.83, 1.2, 1.3 \) for MgSO_4; for CsCl, we test \(\epsilon_{\text{Cs,Cl}} = 0.01411 \text{ kcal/mol} \), where 0.1411 kcal/mol is the \(\epsilon_{\text{Cs,Cl}} \) value in the original parameterization and \(\lambda = 0.9, 1, 1.1, 1.2 \). The \(t_{Mg,O_{out}} \) are not evenly distributed because we opt to perform more simulations using \(t_{Mg,O_{out}} \) values closer to the estimated optimum, for increased accuracy. These values of \(t_{Mg,O_{out}} \) and \(\epsilon_{\text{Cs,Cl}} \) are selected from an initial set of simulations (not shown) that tested a wider range of values for both parameters. For each simulation we calculate the relevant radial distribution functions and start by examining their behavior at large inter-particle separations. This behavior is illustrated in Figure 1, which shows the long-range region of the anion-cation radial distribution functions for both salts and for the optimized values of \(t_{Mg,O_{out}} \) and \(\epsilon_{\text{Cs,Cl}} \). It is patent from the black and red lines in Figure 1 that correlations extend to much larger distances in MgSO_4 solutions than in CsCl ones: the MgSO_4 \(g(r) \) shows oscillations as far as 30 Å whereas in the CsCl solution the \(g(r) \) is essentially flat for \(r > 20 \text{ Å} \). Similar trends are observed for the anion-anion and cation-cation \(g(r) \)s (not shown). The grey lines in Figure 1 are the radial distribution functions for each of the 10 runs performed for each system. The large spread of these curves around the average over all simulations visually conveys the need to perform multiple runs for these systems. The ion-water radial distribution functions (not shown) are essentially flat at large distances indicating an absence of very long range ion-water correlations.
show much smaller oscillations at large \(r \), and so a single lower limit \((x = 20 \, \text{Å}) \) is used to calculate the factors \(f_{ij} \).

The Kirkwood-Buff integrals are calculated from the corrected radial distribution functions according to Equations 6 and 8, and the best estimate of \(G_{ij} \) is obtained by linearly extrapolating \(G_{ij}(R) \) for \(1/R \to 0 \). This procedure is illustrated in Figure 2 for \(G_{\text{MgSO}_4}(R) \). Note that the estimate of \(G_{ij} \) obtained by linear extrapolation differs significantly from the last calculated value of \(G_{ij}(R) \), indicating that the linear extrapolation step is indispensable to obtain good estimates of \(G_{ij} \).

The activity derivative for each test value of the parameters \(t_{\text{MgSO}_4} \) and \(\varepsilon_{\text{CsCl}} \) is calculated according to Equation 5 from the \(G_{ij} \) estimates. These activity derivatives are shown in Figure 3. For MgSO\(_4\) it is apparent that the solution activity derivative decreases markedly as the screening parameter increases, i.e., as the anion-cation electrostatic interactions become less screened. The statistical uncertainty of \(a_{cc} \) becomes significantly larger for lower values of \(t_{\text{MgSO}_4} \), a consequence of the slower solution dynamics observed for these systems. While it would be desirable to decrease this statistical uncertainty, this would have required simulation times even longer than those used in the present study, which was not possible with our resources. Since the values of \(a_{cc} \) for both lower thresholds used to calculate the correction factors \(f_{ij} \) are statistically indistinguishable, both values are used to estimate the \(t_{\text{MgSO}_4} \) value that should reproduce the experimentally determined \(a_{cc} \) for MgSO\(_4\) solutions. In contrast to MgSO\(_4\), the statistical uncertainty associated with the calculated \(a_{cc} \) for CsCl is quite small, consequence of the much faster solution dynamics of this aqueous solution which enables excellent sampling with our production run times. For both MgSO\(_4\) and CsCl, the solution activity derivative depends linearly on the \(t_{\text{MgSO}_4} \) or \(\varepsilon_{\text{CsCl}} \) in the range of parameter values shown in Figure 3. We obtain the optimum values of \(t_{\text{MgSO}_4} \) and \(\varepsilon_{\text{CsCl}} \) by fitting a linear expression to all points in Figures 3(a) and 3(b) and then solving this expression against the experimental molar activity derivatives.

The optimized parameters for CsCl and MgSO\(_4\) are given in Table 1. The molar activity derivatives of solutions of CsCl or MgSO\(_4\)
of concentration 2.5 \textit{m} calculated from new simulations using the final parameters are shown in Table 2. As expected, the activity derivative is close to the experimental value. The density of CsCl or MgSO_4 solutions at the three concentrations calculated from NPT simulations is shown in Table 3. The good agreement between the calculated and the experimentally measured density at all three concentrations, a property that was not used during the parameterization stage, lends confidence to our choice of force field. We emphasize that the ion-water interactions in the new

of concentration 2.5 \textit{m} calculated from new simulations using the final parameters are shown in Table 2. As expected, the activity derivative is close to the experimental value. The density of CsCl or MgSO_4 solutions at the three concentrations calculated from NPT simulations is shown in Table 3. The good agreement between the calculated and the experimentally measured density at all three concentrations, a property that was not used during the parameterization stage, lends confidence to our choice of force field. We emphasize that the ion-water interactions in the new

Table 1 Optimized anion-cation parameters for MgSO_4 and CsCl. See text for the definition of the parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsCl</td>
<td>(t_{\text{calc}})</td>
</tr>
<tr>
<td>MgSO_4</td>
<td>(t_{\text{calc}})</td>
</tr>
</tbody>
</table>

CsCl and MgSO_4 models are unaltered, meaning that the new models reproduce properties of infinitely dilute solutions as well as the original models.

2 Induced dipole moments on sulfate anions by QM calculations

In this work, the Thole screening parameters for anion-cation pairs have been inferred via an indirect route, by empirically matching the experimental activity derivative to that determined from an auxiliary simulation. Given the time-consuming nature of this procedure, we also investigated the possibility of directly obtaining parameters of a Thole-like or anharmonic damping model from high-level quantum mechanical (QM) calculations. Considering that anions are usually far more susceptible to polarization than cations, we employed a numerical setup as shown in Figure 4(a), where the anion is placed in the electric field produced by a point-like test charge sufficiently far away. There are no additional orbitals associated with the test charge, hence an induced dipole moment can be computed unambiguously. Haibo et al. used a similar setup for parameterizing the anharmonic damping of the induced dipole on a chloride anion. The electric field at the location of the anion was varied by varying the distance between the test charge and the chloride nucleus. While this appears to work well for small, single-atom anions, we found that the case of bulky anions such as SO_4^{2-} appears to be problematic.

In Figure 4, a series of QM calculations were performed with the Gaussian software package using a standard correlation consistent set (cc-pVTZ) and an extension (aug-cc-pVTZ) including diffuse functions, as well as a corresponding Pople-style basis set (6-311+ +G(2df,2pd)) also comprising spatially extended orbitals (the same employed in ref. 18). All calculations in the present work are of the single point type, and have been carried out at the HF and MP2 levels of theory, the results produced by both of them being in very close agreement. All computations were performed with the Gaussian software package.

Spatially extended (so called diffuse) orbitals may be expected to be essential in order to accurately model the outskirts of the electron density distribution, governing the anharmonic response

Table 2 Calculated and experimental molar solution activity derivatives for aqueous solutions of CsCl or MgSO_4 at 2.5 \textit{m}. The sources of the experimental values are given in the third column.

<table>
<thead>
<tr>
<th>Conc. (\textit{m})</th>
<th>CsCl</th>
<th>Exp.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.04</td>
<td>1.02</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>1.15</td>
<td>1.16</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>1.24</td>
<td>1.26</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 3 Calculated density of aqueous solutions of CsCl or MgSO_4 at 0.5, 1.5 and 2.5 \textit{m}. The reference experimental values, given in parenthesis, are from the CRC Handbook.

<table>
<thead>
<tr>
<th>Cond. (\textit{m})</th>
<th>Density (g/cm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSO_4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.04 (1.06)</td>
</tr>
<tr>
<td>1.5</td>
<td>1.15 (1.16)</td>
</tr>
<tr>
<td>2.5</td>
<td>1.24 (1.26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CsCl</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.04 (1.06)</td>
</tr>
<tr>
<td>1.5</td>
<td>1.16 (1.18)</td>
</tr>
<tr>
<td>2.5</td>
<td>1.26 (1.28)</td>
</tr>
</tbody>
</table>

Fig. 3 Molar activity derivative of 2.5 \textit{m} solutions as a function of (a) \(t_{\text{calc}}\) for two different lower thresholds \(x\) of calculating the \(g_{ij}(r)\) correction factors, \(f_{ij}\); (b) The scaling factor \(\lambda\) for \(e_{\text{calc}}\). The error bars are obtained from block averages over five blocks, i.e., grouping two simulations into a block. The grey lines are linear fits to all points in each plot, the dashed black line indicates the experimental value of the activity derivative at this concentration.
the positive z-direction is indicated by the arrow running through one of the S–O bonds, with the sulfur placed at the origin. The electric field is specified as the value it attains at the location of the sulfur atom. Due to the spatial extent of SO_2^-, the electric field is not constant across the ion, which experiences a field gradient. Even though the field strength at the origin may be moderate, at the oxygen closest to the test charge it is roughly a factor of 3 larger (for the closest approach), and the coulomb singularity leads to an artificial accumulation of electron density and hence to unrealistically large dipole moments. Similar artifacts occur in the cube configuration only for field strengths beyond 0.25 $|e|/(4\pi\varepsilon_0 m^2)$.

Again, no regime seems to exist from which a damping behavior could be inferred.

Summarizing, for a simple setup with point-like test charges (and a rather bulky anion) in combination with diffuse basis sets, the behavior of the induced dipole moments is prone to show artifacts over the interesting range of distances between point charge and anion. Omitting diffuse functions, on the other hand, does not produce the expected damping of the dipole moment and numerical instabilities are only shifted towards higher field strengths. It appears rather difficult and unreliable to tune the theory level in combination with a setup of point-like test charges in order to reproduce the expected effects. In fact, with respect to a quantum chemical approach one should resort to ab initio molecular dynamics in explicit solvent, to include effects such as screening, charge transfer and possibly modified anion polarizabilities in a condensed phase environment. This, however, requires an accurate and unambiguous assignment of charge density to each of the ionic species involved, which is beyond the scope of the present work.

of the anion. In Figure 4(c) we have compiled the variation of the dipole moment with electric field strength for the three basis sets in the single point charge configuration (Figure 4(a)) and the cube configuration (Figure 4(b)). It can be observed that all curves asymptotically agree on the dipole moment for weak fields. The use of diffuse basis sets (curves in orange and black) in combination with a divalent point charge quickly leads to a steep, unnatural increase of the dipole moment with increasing field strength, and the QM calculations become numerically unstable beyond $|\vec{E}| \sim 0.1 |e|/(4\pi\varepsilon_0 m^2)$. Omitting the diffuse functions (green curve) brings the dipole moments very close to those obtained in the cube configuration of Figure 4(b) (red squares), independent of whether in the latter a diffuse or standard basis set is used. The cube configuration, emulating a rather homogeneous field distribution around the SO_4^{2-} ion, essentially results in a linear increase of the induced dipole moment.

The pronounced dependence of the dipole moment on the numerical setup is explained as follows. The strength of the electric field is specified as the value it attains at the location of the sulfur atom. Due to the spatial extent of SO_4^{2-}, the electric field is not constant across the ion, which experiences a field gradient. Even though the field strength at the origin may be moderate, at the oxygen closest to the test charge it is roughly a factor of 3 larger (for the closest approach), and the coulomb singularity leads to an artificial accumulation of electron density and hence to unrealistically large dipole moments. Similar artifacts occur in the cube configuration only for field strengths beyond 0.25 $|e|/(4\pi\varepsilon_0 m^2)$.

3 Water reorientation in MgSO$_4$ and CsCl solutions

As mentioned in the main text, the average water reorientation decay in MgSO$_4$ and CsCl solutions is non-exponential for $t < 200$ fs, and is well-described by a sum of two exponentials for $t > 200$ fs. The behavior at $t < 200$ fs, while non-exponential, can be approximated as an exponential, so that the full reorientation decay can be well-fit by a sum of three exponentials: $a\exp(-t/\tau_1) + b\exp(-t/\tau_2) + c\exp(-t/\tau_3)$. An average reorientation time can be calculated from the results of the fit as $\tau_{av} = (a\tau_1 + b\tau_2 + c\tau_3)/(a + b + c)$, similarly to what was done for water subpopulations near isolated pairs or clusters of ions. In Table 4
we show the results of this fit and the average reorientation times for water in solutions of MgSO$_4$ or CsCl.

Table 4 Fitting constants and average reorientation decay times (ps) for water molecules in MgSO$_4$ and CsCl solutions. See text for further details.

<table>
<thead>
<tr>
<th>salt</th>
<th>MgSO$_4$</th>
<th>CsCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. (m)</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>a</td>
<td>0.229</td>
<td>0.245</td>
</tr>
<tr>
<td>t_1 (ps)</td>
<td>0.091</td>
<td>0.095</td>
</tr>
<tr>
<td>b</td>
<td>0.199</td>
<td>0.275</td>
</tr>
<tr>
<td>t_2 (ps)</td>
<td>1.193</td>
<td>1.137</td>
</tr>
<tr>
<td>c</td>
<td>0.573</td>
<td>0.480</td>
</tr>
<tr>
<td>t_3 (ps)</td>
<td>10.188</td>
<td>6.346</td>
</tr>
<tr>
<td>τ_{rot} (ps)</td>
<td>6.1</td>
<td>3.4</td>
</tr>
</tbody>
</table>

4 **Anion-cation radial distribution function**

The position and intensity of the extrema of the anion-cation radial distribution function for CsCl and MgSO$_4$ solutions is given in Table 5. The absence of contact ion pairs (CIPs) and the presence of solvent-shared and solvent separated ion pairs in MgSO$_4$ solutions is supported by results from Raman spectroscopy,26,27 calorimetric studies,26,27 and early ultrasonic relaxation measurements.28 The Raman studies, done at concentrations of about 2 M, show that the spectrum of SO$_4^{2-}$ is not affected by the presence of Mg$_2^{2+}$, which is consistent with the absence of CIPs. The calorimetric studies indicate that the partial molal entropies of metal sulfate ion pairs are negative for MgSO$_4$ and ZnSO$_4$, suggesting formation of SIPS, but positive for Cs$_2$SO$_4$ and CaSO$_4$, consistent with the formation of CIPS and the release of water molecules from the hydration shells of the ions. The Thz/FIR measurements, done at concentrations up to the solubility limit, show low frequency mode distributions; accompanying calculations indicate that results are explained by the presence of SIPS and 2SIPS only. We point out, however, that other experiments have suggested that CIPS are present in MgSO$_4$ solutions. For example, Raman spectroscopy up to 2.5 M, ultrasonic measurements up to 0.2 M and dielectric relaxation spectroscopy up to 2.5 M suggest that Mg$^{2+}$ and SO$_4^{2-}$ form CIPS even at low salt concentrations.$^{29-32}$ The interpretation of the dielectric relaxation measurements, however, relies strongly on the assignment of relaxation times of order 30 ps to the contact ion pair. As we show below, relaxation times of this magnitude arise for water molecules directly between ions forming a solvent-shared ion pair, raising the possibility of reinterpreting the existing dielectric relaxation data.

In contrast to MgSO$_4$, the anion-cation radial distribution functions for CsCl solutions have only two peaks, the first one corresponding to contact ion pair and the second to solvent-shared configurations. These findings are consistent with the limited experimental information available for this salt. Dielectric relaxation spectroscopy,33,34 infrared attenuated total reflection spectroscopy,35,36 and analysis of freezing point depression measurement's indicate that CsCl forms weak ion pairs in aqueous solutions of a wide range of concentrations, but the nature of the ion pairs could not be identified from these measurements. The type of ion pairs formed by CsCl could be identified from recent electric conductivity measurements at concentrations < 0.005 mol/dm3, together with a two-dimensional model for water and ions parameterized to reproduce the association constants obtained from those measurements: CsCl forms both weak CIPS and SIPS,38 consistent with our simulation results. New analyses,39,40 early conductivity data,8 also are in line with these results.

The distribution of the probability of forming various numbers of ion pairs per ion in MgSO$_4$ solutions of concentration 2.5 m is shown in Figure 5. At this concentration, most ions participate in 4 or 5 ion pairs, indicating that clusters are frequent. The abundance of clusters in concentrated MgSO$_4$ solutions is consistent with the large supra-additive slowdown visible in these solutions, shown in the main text to originate in ion clusters.

Fig. 5 Probability per ion of forming 0, 1, 2, ... ion pairs of the indicated types in MgSO$_4$ solutions of concentration 2.5 m.

5 **Calculation of ion pair lifetimes**

We calculate ion pair lifetimes using the stable states framework developed by Northrup and Hynes,41 as implemented by Joung and Cheatham.42 In this framework, only transitions between stable ion pair configurations are considered in the calculation...
of the lifetime; transient events where the ion pairs breakup and quickly reform are disregarded. This is achieved by defining stable reactant and product states from the positions of the extrema of the anion-cation radial distribution functions. A complete ion pair state, signaled by a maximum \(i \) in the anion-cation \(g(r) \), is delimited simply by the positions of the minima \(i \) to its left (if it exists) and \(i + 1 \) to its right. A stable ion pair state, however, considers only the subset of configurations closer to the maximum \(i \): the left and right boundaries of each stable ion pair state associated with maximum \(i \) in the \(g(r) \) are the distances satisfying the conditions \(\sqrt{g(r_{\text{min},i})g(r_{\text{max},i})} \), if minimum \(i \) exists, and \(\sqrt{g(r_{\text{max},i})g(r_{\text{min},i+1})} \). To calculate the ion pair lifetime, we consider only transitions between stable ion pair states, and compute the survival function \(S(t) \):

\[
S(t) = \langle n_R(0)n_R(t) \rangle
\]

(9)

In this expression \(n_R(0) = 1 \) when an anion and a cation form a stable ion pair at time 0 (i.e., a reactant pair); \(n_R(0) = 0 \) otherwise. \(n_R(t) = 1 \) up to the instant, \(t \), when the original reactant pair forms a different, stable (i.e., product), ion pair; \(n_R(t) = 0 \) from that time onwards, even if the original reactant state reforms. The average is over all \(n_R(0) = 1 \). The calculated survival functions (not shown) are well-fit by a monoequational \(\exp(-t/\tau_{\text{IP}}) \), from which the ion pair lifetimes, \(\tau_{\text{IP}} \), shown in the main text, are obtained. The inner and outer SIPs seen in MgSO\(_4\) solutions are considered a single state for the purpose of the lifetime calculation.

5.1 Explaining the differences between ion pair lifetimes in CsCl and MgSO\(_4\) solutions

For CsCl, the ion pair lifetimes are primarily governed by diffusion: all ion pair lifetimes at all concentrations are comparable to the time, \(\tau_{\text{D}} \), it takes each ion to diffuse over 1 Å, half of the distance necessary to break an ion pair: \(\tau_{\text{D}} = 7 \) ps. For example, the CIP lifetime is 6.7 ps and the SIP lifetime is 4.6 ps at 0.5 m. The shorter SIP lifetimes relative to the CIP ones can be explained by the fact that there are two pathways to break a SIP – the ions can either move closer together to form a CIP or they can move even further apart – whereas CIPs may break only by forming a SIP.

We also examine the possibility that the differences between SIP and CIP lifetimes in CsCl solutions could reflect differences in the magnitude of the anion-cation electrostatic interactions in each ion pair configuration. We do so by calculating the electrostatic energy, \(U \), between two charges of magnitude \(\pm 1 \) |e| in a medium of dielectric constant 78 at the characteristic CIP and SIP distances. \(U = -2.0 \) k\(_B\)T (\(T = 300 \) K; \(k_B \) is Boltzmann’s constant) for a charge-charge distance \(D = 3.6 \) Å, corresponding to a CsCl CIP, and \(U = -1.4 \) k\(_B\)T for \(D = 5 \) Å, corresponding to a CsCl 2SIP. The difference \(\Delta U = -1.4 + 2.0 = 0.6 \) k\(_B\)T must be supplied to break a CIP; this small difference indicates that, for CsCl, the electrostatic anion-cation electrostatic interactions do not govern the ion pair lifetimes.

The lifetimes of MgSO\(_4\) 2SIPs also appear to be governed primarily by diffusion: for example, the 2SIP lifetime is 24 ps at 0.5 m, and \(\tau_D = 20 \) ps at the same concentration. At 2.5 m, the 2SIP lifetime is 53 ps and the \(\tau_D = 70 \) ps. The magnitude of the electrostatic anion-cation interactions (calculation not shown) indicates that these interactions should not significantly influence the 2SIP lifetimes.

The lifetimes of MgSO\(_4\) SIPs, however, are much longer than \(\tau_D \), indicating that something other than diffusion is governing their breakage. For example, at 0.5 m, \(\tau_D = 20 \) ps and the SIP lifetime is 118 ps. To assess the contribution of the ion valence to the SIP lifetime, we compare the electrostatic energy between two charges of magnitude \(\pm 2 \) |e| in a medium of dielectric constant 78 at characteristic ion pair distances. \(U = -5.7 \) k\(_B\)T for a charge-charge distance \(D = 5 \) Å, corresponding to a MgSO\(_4\) SIP, and \(U = -3.8 \) k\(_B\)T for \(D = 7.5 \) Å, corresponding to a MgSO\(_4\) 2SIP. Breaking a SIP, thus requires at least \(U = -3.8 + 5.7 = 19 \) k\(_B\)T; for comparison, breaking a 2SIP pair by increasing the anion-cation distance by 2 Å requires only 0.3 k\(_B\)T. The difference in the electrostatic energy necessary to break SIP and 2SIP pairs and the differences between their lifetimes suggest that the large lifetimes of MgSO\(_4\) SIP pairs are caused by the strong electrostatic attraction between ions in SIP configuration: if we assume that the time required to further separate the ions in a 2SIP pair can be written as \(\tau_{2\text{SIP}} \times 2 = 24 \times 2 = k \times \exp(\pm 0.3) \) – i.e., we consider an uphill free energy landscape associated with this process; the factor of 2 is there because 2SIP can break both by shortening or lengthening the anion-cation distance, and here consider only the latter possibility; \(k \) is a constant related to diffusion; then \(\tau_{2\text{SIP}} = 118 \) ps is consistent with an uphill energy difference of 1.2 k\(_B\)T, which is comparable to the electrostatic \(\Delta U = 19 \) k\(_B\)T.

All ion pair lifetimes are necessarily dependent on the structure of water around the ions and on the time scales of its reorganization. This water structure will introduce a free energy barrier between ion-pair configurations, something that the simplistic analysis presented above does not include. Despite this obvious limitation of the arguments presented above, these arguments are sufficient to largely explain the trends observed in the ion pair lifetimes of CsCl and MgSO\(_4\) solutions.

6 Water reorientation near isolated ions

We use the \(P_2(t) \) function defined in the main text to quantify the OH reorientational dynamics in the vicinity of isolated ions (i.e., from the isolated ion simulations). Water subpopulations are partitioned in two different manners around the isolated ions: (i) We consider water subpopulations corresponding to the ions’ first or second hydration layers, where the boundaries of each layer are the minima in the ion-water oxygen radial distribution function; the ion-water oxygen radial distribution functions can be found in our prior publication\(^\text{43}\). The reorientation decay of each hydration layer is shown in Figure 6; the corresponding average reorientation decay times, calculated as described in the main text, are shown in Table 6. These reorientation decays are used as input to the analytical model described by Equation 2 in the main text. (ii) We consider waters in spherical shells with mid-point distance \(d \) to the ions and thickness 1 Å; the corresponding average reorientation times, calculated as described in the main text, are shown in Table 7. The average reorientation times shown in Table 7 are
used in the calculation of the cooperative factor, S, around ion pairs or clusters. The reorientation times calculated according to (i) and (ii) are similar because both definitions capture similar water subpopulations.

Fig. 6 $P_2(t)$ function calculated for water hydroxyl groups for waters belonging (at t=0) to the indicated hydration layers around isolated ions. For comparison, the reorientation decay of pure water is also shown.

Table 6 Average OH reorientation times (ps) of waters with oxygen atoms belonging (at t=0) to the first or second hydration layers (HLs) of the indicated isolated ions.

<table>
<thead>
<tr>
<th>ion</th>
<th>1st HL</th>
<th>2nd HL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^{2+}$</td>
<td>4.7</td>
<td>1.8</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Cs$^+$</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>2.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 7 Average OH reorientation times (ps) of waters with oxygen atoms belonging (at t=0) to spherical shells with thickness 1 Å and mid-point distance d to the indicated isolated ions.

<table>
<thead>
<tr>
<th>d (Å)</th>
<th>Mg$^{2+}$</th>
<th>SO$_4^{2-}$</th>
<th>Cs$^+$</th>
<th>Cl$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>1.5</td>
<td>2.5</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>1.9</td>
<td>2.9</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

7 Low charge density cations affect dynamics of water around anions

We note that the Cs$^+$ cation, which when isolated slows down water dynamics only minimally, seems to induce a sizable extra slowdown of water in the first hydration layer of Cl$^-$ when forming a solvent-shared ion pair. Polarization-resolved femtosecond infrared pump-probe spectroscopy measurements of solutions of various 1:1 salts at frequencies that select for water hydroxyl groups hydrogen bonded to the anion – and largely leave out water hydroxyl groups hydrogen bonded to other water molecules – have suggested that the reorientation dynamics of these groups depends on the nature of the counterion, with the magnitude of this effect increasing with the charge density of the ions44,45; similar trends have been found using 2D IR vibrational echo spectroscopy46. Our results are consistent with that scenario and suggest such effects may occur already for low charge density ions such as Cs$^+$. In the main text, however, we show that the average water dynamics in CsCl solutions could be understood as the sum of contributions of water dynamics near isolated ions and water considered in bulk conditions, which apparently contradicts the combined effect of anions and cations observed in simulations of fixed Cs$^+\cdots$Cl$^-$ ion pairs and experimental observation. This contradiction can be lifted if one considers that the magnitude of the extra slowdown of water rotation by ion pairs relative to that induced by isolated ions is small – the maximum increase in the reorientation time constants is 1 ps – and the fraction of water molecules affected is also small. In other words, we expect the extra slowdown of water rotation brought by the presence of ion pairs to not be noticeable when considering the overall water dynamics in solution.
8 Reorientation decay times and cooperativity factors

The average reorientation times and cooperativity factors for water OH groups around ion configurations with fixed anion-cation distances and freely rotating ions not displayed in the main text are shown in Figures 7 and 8.

Fig. 7 Average reorientation decay times (ps) of OH groups belonging to different water subpopulations around the indicated ion aggregates. The color scale of the smaller spheres conveys, for each panel, the magnitude of the reorientation time shown next to the spheres. Consecutive water subpopulations along the dashed lines are 1 or 2 Å apart. The subpopulations closest to Mg$^{2+}$ are at $d = 2$ Å and those closest to SO$_4^{2-}$ at $d = 4$ Å.

9 Water reorientation dynamics in concentrated MgSO$_4$ solutions as the sum of contributions of water subpopulations near ion pairs

We assume that all ion pairs in solution can be considered isolated, and estimate the average water reorientation dynamics in MgSO$_4$ solutions as the sum of the contributions of water molecules near ion pairs and those under bulk conditions, if they exist, according to the expression

$$P_{2solution}(t) = \frac{n_b}{n_w} P_{2b}(t) + \sum_{i=1}^{3} \frac{n_{pairs,i}}{n_w} \sum_{j=1}^{4} n_{w,j,i} P_{2,j,i}(t)$$

In this expression, water molecules are partitioned between the three different types of ion pairs, indicated by the subscript i (inner or outer SIP, or 2SIP, respectively $i = 1, 2, 3$). For each ion pair,
four different water subpopulations, denoted by the subscript \(j \), may be considered. The number of water molecules in each subpopulation near the ions is indicated by \(n_{w, j} \), and their reorientation dynamics by \(P_{2,j,i}(t) \), and \(n_p(t) \) are the analogous quantities for water molecules considered in a bulk environment. \(n_{w} \) is the total number of water molecules in the simulation of the salt solution and \(n_{pairs,i} \) is the total number of ion pairs of type \(i \) formed in the solution. The subpopulations included to model the solution reorientation dynamics at each concentration depend on the total number of ion pairs formed per ion at that concentration. At all concentrations, waters within a cylindrical region lying between the two ions are included in the model. At the lowest concentration, each ion participates in less than two ion pairs, so we consider also waters belonging to the ionic half-spheres that cap that cylinder. At 1.5 \(m \) and 2.5 \(m \), each ion participates in more than two ion pairs so the half spheres are no longer necessary; in this case, however, the model must include the water subpopulation within a second cylinder, which forms a 90° angle with the first one. This cylinder is called excluded because it contains only those water molecules which are not included in the first cylindric region. The terms in the model are used in order decreasing perturbation of water dynamics: water molecules are assigned to the cylinders of the SIP, followed by the cylinders of the SIP\(_\theta\), and 2SIPs, and only afterwards to the SIP half-spheres for the lowest concentration, or to the SIP\(_\theta\), and 2SIP excluded cylinders, at the other concentrations. Water molecules with bulk-like dynamics are only assumed to exist at the two lowest concentrations. The results of this model depend on the radius considered in the definition of the water subpopulations around the cation and the anion, so several values for these radii were tested within physically reasonable limits. The results presented in the main text correspond to the best agreement between the analytical model and the reorientation decay measured directly in the simulations of salt solutions. The results for the 1.5 \(m \) concentration correspond to a radius of 4.65 Å (the limits of the first hydration layer of SO\(_4^{2-}\)) for both the anion and the cation water subpopulations; for the 2.5 \(m \) concentration, the same radius was used for the anion; for the cation, a radius of 3.02 Å (the boundary of the first hydration layer of Mg\(^{2+}\)) was used.

11 Correlation between electric field characteristics and water slowdown for region C in MgSO\(_4\) pairs

As mentioned in the main text, water subpopulations not belonging to Mg\(^{2+}\)’s first hydration shell in isolated MgSO\(_4\) ion pairs with freely rotating SO\(_4^{2-}\) show reorientation slowdown that correlates with increased electric field magnitude. This correlation can be seen in Figure 9.

12 Correlation between electric field and water dynamics in SIP\(_\theta\), ion pairs with fixed SO\(_4^{2-}\) orientation

We investigate the surprising absence of a strong correlation between the characteristics of the local electric fields and OH rotation more deeply, by explicitly examining the dependence of water reorientation near ion pairs on sulfate orientation and dipole moment. We perform additional simulations of MgSO\(_4\) ion pairs
in SIP configuration, where both ion orientation and dipolar moment take the fixed values shown in Table 8. We perform a total of six simulations based on two sulfate configurations, one where the \(\text{SO}_4^{2-} \) dipole moment, \(|\vec{p}| = 0.26 \ |e| \text{Å} \), has the same value as the average \(|\vec{p}| \) in the SIP; simulations with freely rotating ions discussed in the prior sections and in the main text and, for comparison, another configuration where \(|\vec{p}| = 0.22 \ |e| \text{Å} \), the average dipole moment of sulfate in water at infinite dilution\(^{1}\). For each \(\text{SO}_4^{2-} \) configuration we perform simulations with three different \(\text{SO}_4^{2-} \) orientations so that the component of the dipole moment along the anion-cation direction, \(p_z \), is either +0.14, 0 or -0.14 \ |e| \text{Å} \; p_z = +0.14 \ |e| \text{Å} \) is the average \(p_z \) in the SIP; simulations with freely rotating \(\text{SO}_4^{2-} \). For each simulation, we calculate the average OH reorientation time, the average reorientation time of the electric field and its average magnitude as a function of water subpopulation as described in the main text for the case of ion pairs with freely rotating ions. The spatial distributions of the average OH reorientation times are shown in Figures 10 and 11, and the correlation between these reorientation times and the average magnitude of the electric field in each water subpopulation is shown in Figure 12. Figure 12 shows that water rotation near ion pairs with fixed ion orientation correlates with the magnitude of the electric field similarly to the freely rotating ion pairs (see main text), indicating that simulations where the ions are not free to rotate may be used to gain insight into the mechanisms leading to supra-additive slowdown.

Figures 10 and 11 show that the magnitude of supra-additive slowdown observed in these simulations is strongly a function of the specific \(\text{SO}_4^{2-} \) configuration and orientation used, but shows no strong correlation with either the total magnitude of the \(\text{SO}_4^{2-} \) dipole moment or the magnitude of its dipole moment along the anion-cation direction. For example, supra-additive slowdown similar to that occurring in a SIP, ion pair with freely rotating ions is observed for three simulations where both the average dipole moment and its component along the anion-cation direction differ markedly: those simulations with \(\langle \vec{p}, \vec{p}_z \rangle = (0.26, +0.14), (0.22, 0) \) and \((0.22, -0.14) \ |e| \text{Å} \). The ion pair with \(\langle \vec{p}, \vec{p}_z \rangle = (0.22, +0.14) \ |e| \text{Å} \), which has a less intense \(\text{SO}_4^{2-} \) dipole moment, shows much stronger cooperative slowdown than that with \((0.26, +0.14) \ |e| \text{Å} \), which has a larger dipole moment but similar \(\vec{p}_z \). These results suggest that the extra forces, \(f_{\text{p}_{12}} \), acting on the rotating water molecules because of the polarizability of the ions are weakly related, at best, to the supra-additive slowdown detected near MgSO\(_4\) SIP, ion pairs.

Table 8 Details of simulations of MgSO\(_4\) SIP, pairs with fixed anion-cation distance and fixed \(\text{SO}_4^{2-} \) orientation. \(|\vec{p}| \) is the magnitude of the \(\text{SO}_4^{2-} \) dipole moment and \(|\vec{p}_z| \) the component of the \(\text{SO}_4^{2-} \) dipole moment along the anion-cation direction.

| \(|\vec{p}| \), \ |e| \text{Å} \ | \(\vec{p}_z \), \ |e| \text{Å} \ | \hline
0.22	+0.14
0.22	0
0.22	-0.14
0.26	+0.14
0.26	0
0.26	-0.14

References

Fig. 10 Average reorientation decay times (ps) of OH groups belonging to different water subpopulations around MgSO$_4$ SIP ion pairs with fixed ion configuration and orientation. The color scale of the smaller spheres conveys, for each panel, the magnitude of the reorientation time shown next to the spheres. Consecutive water subpopulations along the dashed lines are 1 or 2 Å apart. The subpopulations closest to Mg$^{2+}$ are at $d=2$ Å and those closest to SO$_4^{2-}$ at $d=4$ Å. The subpopulations at (Mg$^{2+}$, 2 Å, 0°) are only shown when they are sufficiently large to allow a good-quality fit to the $P_2(t)$ curve.

Fig. 11 Average reorientation decay times (ps) of OH groups belonging to different water subpopulations around MgSO$_4$ SIP ion pairs with fixed ion configuration and orientation. The color scale of the smaller spheres conveys, for each panel, the magnitude of the reorientation time shown next to the spheres. Consecutive water subpopulations along the dashed lines are 1 or 2 Å apart. The subpopulations closest to Mg$^{2+}$ are at $d=2$ Å and those closest to SO$_4^{2-}$ at $d=4$ Å. The subpopulations at (Mg$^{2+}$, 2 Å, 0°) are only shown when they are sufficiently large to allow a good-quality fit to the $P_2(t)$ curve.

26 R. M. Izatt, D. Eatough, J. J. Christensen and C. H.
Fig. 12 Electric field magnitude, $⟨|\vec{E}|⟩$, as a function of the reorientation time of water OH groups belonging to different water subpopulations around MgSO$_4$ SIP$_i$ ion pairs with fixed ion orientation. For comparison, data for SIP$_i$, SIP$_o$ and 2SIP with freely rotating ions is also included.