Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Concise Total Synthesis of Enigmazole A

MPG-Autoren
/persons/resource/persons188353

Ahlers,  Andreas
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132911

de Haro,  Teresa
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58558

Gabor,  Barbara
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

[346]SI.pdf
(Ergänzendes Material), 2MB

Zitation

Ahlers, A., de Haro, T., Gabor, B., & Fürstner, A. (2016). Concise Total Synthesis of Enigmazole A. Angewandte Chemie International Edition, 55(4), 1406-1411. doi:10.1002/anie.201510026.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-6439-E
Zusammenfassung
An efficient entry into the phosphorylated marine macrolide enigmazole A is described. Enigmazole A interferes with c-Kit signaling by an as yet unknown mode of action and is therefore a potential lead in the quest for novel anticancer agents. Key to success is a gold-catalyzed cascade comprising a [3,3]-sigmatropic rearrangement of a propargyl acetate along the periphery of a macrocyclic scaffold, followed by a transannular hydroalkoxylation of the resulting transient allenyl acetate. This transformation mandated the use of a chiral gold catalyst to ensure a matching double-asymmetric setting. Other noteworthy steps are the preparation of the oxazole building block by a palladium-catalyzed C−H activation, as well as the smooth ring-closing alkyne metathesis of a diyne substrate bearing a propargylic leaving group, which has only little precedent.