Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Slowdown of the Electronic Relaxation Close to the Mott Transition

MPG-Autoren
/persons/resource/persons180569

Sayyad,  Sharareh
Theory of Correlated Systems out of Equilibrium, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
University of Hamburg-CFEL, 22761 Hamburg, Germany;

/persons/resource/persons140407

Eckstein,  Martin
Theory of Correlated Systems out of Equilibrium, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
University of Hamburg-CFEL, 22761 Hamburg, Germany;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1601.02994.pdf
(Preprint), 635KB

PhysRevLett.117.096403.pdf
(Verlagsversion), 452KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sayyad, S., & Eckstein, M. (2016). Slowdown of the Electronic Relaxation Close to the Mott Transition. Physical Review Letters, 117(9): 096403. doi:10.1103/PhysRevLett.117.096403.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-606E-9
Zusammenfassung
We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near the Mott transition, after the system is quenched into a hot electron state and equilibrates with an environment which is colder than the Fermi-liquid crossover temperature. Close to the transition, we identify a purely electronic bottleneck time scale, which depends on the spectral weight around the Fermi energy in the bad metallic phase in a nonlinear way. This time scale can be orders of magnitude larger than the bare and renormalized electronic hopping time, so that a separation of electronic and lattice time scales may break down. The results are obtained using nonequilibrium dynamical mean-field theory and a slave-rotor representation of the Anderson impurity model.