Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Beyond the Hubbard bands in strongly correlated lattice bosons

MPG-Autoren
/persons/resource/persons140407

Eckstein,  Martin
CFEL, 22761 Hamburg, Germany;
Theory of Correlated Systems out of Equilibrium, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevA.92.063602.pdf
(Verlagsversion), 625KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Strand, H. U. R., Eckstein, M., & Werner, P. (2015). Beyond the Hubbard bands in strongly correlated lattice bosons. Physical Review A, 92(6): 063602. doi:10.1103/PhysRevA.92.063602.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-3AFB-7
Zusammenfassung
We investigate features in the single-particle spectral function beyond the Hubbard bands in the strongly correlated normal phase of the Bose-Hubbard model. There are two distinct classes of additional peaks generated by the bosonic statistics. The first type is thermally activated Hubbard “sidebands”, with the same physical origin as the zero-temperature Hubbard bands, but generated by excitations from thermally activated local occupation number states. The second class are two-particle fluctuation resonances driven by the lattice dynamics. In the unity filling Mott insulator, this takes the form of a localized triplon combined with a dispersing holon. Both types of resonances also manifest themselves in the structure factor and the interaction modulation spectra obtained from nonequilibrium bosonic dynamical mean-field theory calculations. Our findings explain experimental lattice modulation and Bragg spectroscopy results, and they predict a strong temperature dependence of the first sideband, thereby opening the door to precise thermometry of strongly correlated lattice bosons.