Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct visualization of spatiotemporal structure of self-assembled colloidal particles in electrohydrodynamic flow of a nematic liquid crystal

MPG-Autoren
/persons/resource/persons173548

Jampani,  Venkata Subba Rao
Group Structure formation in soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173455

Bahr,  Christian
Group Structure formation in soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sasaki, Y., Hoshikawa, H., Seto, T., Kobayashi, F., Jampani, V. S. R., Herminghaus, S., et al. (2015). Direct visualization of spatiotemporal structure of self-assembled colloidal particles in electrohydrodynamic flow of a nematic liquid crystal. Langmuir, 31(13), 3815-3819. doi:10.1021/acs.langmuir.5b00450.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-5F16-5
Zusammenfassung
Characterization of spatiotemporal dynamics is of vital importance to soft matter systems far from equilibrium. Using a confocal laser scanning microscopy, we directly reveal three-dimensional motion of surface-modified particles in the electrohydrodynamic convection of a nematic liquid crystal. Particularly, visualizing a caterpillar-like motion of a self-assembled colloidal chain demonstrates the mechanism of the persistent transport enabled by the elastic, electric, and hydrodynamic contributions. We also precisely show how the particles’ trajectory is spatially modified by simply changing the surface boundary condition.