Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models

MPG-Autoren
/persons/resource/persons173446

Altaner,  Bernhard
Group Principles of Self Organisation, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons187641

Wachtel,  Artur
Group Principles of Self Organisation, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons48934

Vollmer,  Jürgen
Group Principles of Self Organisation, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Altaner, B., Wachtel, A., & Vollmer, J. (2015). Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models. Physical Review E, 92(4): 042133. doi:10.1103/PhysRevE.92.042133.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-5EB9-1
Zusammenfassung
Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015)] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces.