Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Areas V1 and V2 show microsaccade-related 3-4 Hz covariation in gamma power and frequency

MPG-Autoren

Fries,  P.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lowet, E., Roberts, M. J., Bosman, C. A., Fries, P., & de Weerd, P. (2016). Areas V1 and V2 show microsaccade-related 3-4 Hz covariation in gamma power and frequency. European Journal of Neuroscience, 43(10), 1286-1296. doi:10.1111/ejn.13126.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-2C8F-E
Zusammenfassung
Neuronal gamma-band synchronization (25-90 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. Yet, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation of gamma oscillation power and frequency, as well as inter-areal gamma synchronization by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic (ECoG) V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas, and shaped by a microsaccade-related 3-4 Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. This article is protected by copyright. All rights reserved.